Advertisement

Very Sensitive Nanocalorimetry of Small Mass Systems and Glassy Materials

  • J.-L. GardenEmail author
  • A. Tavakoli
  • T. Nguyen-Duc
  • A. Frydman
  • M. Laarraj
  • J. Richard
  • O. Bourgeois
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Nanocalorimetry is a technique that deals with any thermal measurement methods in which either the samples to be studied have a size in the range of the nanometer scale or the measured energies involved are of the order of the nanojoule or below Garden et al (Acta 492:16–28, 2009). In this paper, we show the results of two nanocalorimetric experiments. The first one is related to the measurement of specific heat on ultra-thin small systems (thin films) at low temperature. It is shown that such measurement can be sensitive to less than one monolayer of materials. The second one illustrates the efficiency of calorimetric studies sensitive at the nanoJoule on complex system (polymeric glass) at room temperature. We then discuss the potentiality of these experimental methods in the field of security: the measurement of either a very small mass or very small quantity of energy for the detection of tiny thermal events.

Keywords

Heat Capacity Vinyl Acetate Temperature Oscillation Silicon Membrane Silicon Nitride Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge technical supports from Nanofab, the Cryogenic and the Electronic facilities and the Pole Capteur Thermométrique et Calorimétrie of Institut Néel for these experiments. Funding for this project was provided by LANEF, Laboratoire d’Excellence, for the senior grant of Aviad Frydman, and by the CNRS (Mission pour l’interdisciplinarité) by means of the call DEFI Instrumentation aux Limites.

References

  1. 1.
    Garden J-L, Guillou H, Lopeandia AF, Richard J, Heron J-S, Souche GM, Ong FR, Vianay B, Bourgeois O (2009) Thermochim. Acta 492:16–28Google Scholar
  2. 2.
    Fominaya F, Fournier T, Gandit P, Chaussy J (1997) Rev Sci Instrum 68:4191ADSCrossRefGoogle Scholar
  3. 3.
    Bourgeois O, Skipetrov SE, Ong F, Chaussy J (2005) Phys Rev Lett 94:057007ADSCrossRefGoogle Scholar
  4. 4.
    Ong FR, Bourgeois O (2007) Europhys Lett 79:67003ADSCrossRefGoogle Scholar
  5. 5.
    Poran S, Molina-Ruiz M, Gerardin A, Frydman A, Bourgeois O (2014) Rev Sci Instrum 85:053903ADSCrossRefGoogle Scholar
  6. 6.
    Garno JP (1978) Rev Sci Instrum 49:1218ADSCrossRefGoogle Scholar
  7. 7.
    Bourgeois O, Dynes RC (2002) Phys Rev B 65:144503ADSCrossRefGoogle Scholar
  8. 8.
    Bourgeois O, Frydman A, Dynes RC (2002) Phys Rev Lett 88:186403ADSCrossRefGoogle Scholar
  9. 9.
    Molina Ruiz M, Lopeandia AF, Pi F, Givord D, Bourgeois O, Rodriguez-Viejo J (2011) Phys Rev B 83:140407(R)Google Scholar
  10. 10.
    Bourgeois O, André E, Macovei C, Chaussy J (2006) Rev Sci Instrum 77:126108ADSCrossRefGoogle Scholar
  11. 11.
    Laarraj M, Adhiri R, Ouaskit S, Moussetad M, Guttin C, Richard J, Garden J-L (2015) Rev Sci Instrum 86:115110ADSCrossRefGoogle Scholar
  12. 12.
    Sullivan P, Seidel G (1968) Phys Rev 173:679ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • J.-L. Garden
    • 1
    • 2
    Email author
  • A. Tavakoli
    • 1
    • 2
  • T. Nguyen-Duc
    • 1
    • 2
  • A. Frydman
    • 1
    • 2
    • 3
  • M. Laarraj
    • 1
    • 2
  • J. Richard
    • 1
    • 2
  • O. Bourgeois
    • 1
    • 2
  1. 1.Institut NÉEL, CNRSGrenobleFrance
  2. 2.University of Grenoble Alpes, Institut NEELGrenobleFrance
  3. 3.Department of PhysicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations