Advertisement

Spin Relaxation in GaAs Based Quantum Dots for Security and Quantum Information Processing Applications

  • S. PrabhakarEmail author
  • R. Melnik
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

We report new three-dimensional modeling results of the band structure calculation of \(\mathrm{GaAs/Al_{0.3}Ga_{0.7}As}\) quantum dots (QDs) in presence of externally applied magnetic and electric fields along z-direction. We explore the influence of spin-orbit coupling in the effective g-factor of electrons in such QDs for possible application in security devices, encrypted data and quantum information processing. We estimate the relaxation rate in QDs caused by piezo-phonons.

Keywords

Semiconductor quantum dots Spin-orbit coupling Electron-phonon interaction Spin-flip rates Coupled mathematical models Spin relaxation mechanisms 

References

  1. 1.
    Bulaev DV, Loss D (2005) Spin relaxation and decoherence of holes in quantum dots. Phys Rev Lett 95:076805ADSCrossRefGoogle Scholar
  2. 2.
    Bulaev DV, Loss D (2005) Spin relaxation and anticrossing in quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys Rev B 71:205324ADSCrossRefGoogle Scholar
  3. 3.
    Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C: Solid State Phys 17:6039ADSCrossRefGoogle Scholar
  4. 4.
    Comsol Multiphysics version 5.1. www.comsol.com
  5. 5.
    Dresselhaus G (1955) Spin-orbit coupling effects in zinc blende structures. Phys Rev 100:580ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Elzerman JM, Hanson R, Willems van Beveren LH, Witkamp B, Vandersypen LMK, Kouwenhoven LP (2004) Single-shot read-out of an individual electron spin in a quantum dot. Nature 430:431ADSCrossRefGoogle Scholar
  7. 7.
    Golovach VN, Khaetskii A, Loss D (2004) Phonon-induced decay of the electron spin in quantum dots. Phys Rev Lett 93:016601ADSCrossRefGoogle Scholar
  8. 8.
    Jiang HW, Yablonovitch E (2001) Gate-controlled electron spin resonance in \(\mathrm{G}\mathrm{a}\mathrm{A}\mathrm{s}/\mathrm{A}\mathrm{l}_{x}\mathrm{Ga}_{1-x}\mathrm{As}\) heterostructures. Phys Rev B 64:041307ADSCrossRefGoogle Scholar
  9. 9.
    Khaetskii AV, Nazarov YV (2000) Spin relaxation in semiconductor quantum dots. Phys Rev B 61:12639ADSCrossRefGoogle Scholar
  10. 10.
    Khaetskii AV, Nazarov YV (2001) Spin-flip transitions between zeeman sublevels in semiconductor quantum dots. Phys Rev B 64:125316ADSCrossRefGoogle Scholar
  11. 11.
    Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G, Finley, JJ (2004) Optically programmable electron spin memory using semiconductor quantum dots. Nature 432:81ADSCrossRefGoogle Scholar
  12. 12.
    Nowak MP, Szafran B, Peeters FM, Partoens B, Pasek WJ (2011) Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field. Phys Rev B 83:245324ADSCrossRefGoogle Scholar
  13. 13.
    Olendski O, Shahbazyan TV (2007) Theory of anisotropic spin relaxation in quantum dots. Phys Rev B 75:041306ADSCrossRefGoogle Scholar
  14. 14.
    Prabhakar S, Melnik R (2015) Electric field control of spin splitting in III–V semiconductor quantum dots without magnetic field. Eur Phys J B 88:273ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Prabhakar S, Raynolds JE (2009) Gate control of a quantum dot single-electron spin in realistic confining potentials: anisotropy effects. Phys Rev B 79:195307ADSCrossRefGoogle Scholar
  16. 16.
    Prabhakar S, Raynolds J, Inomata A, Melnik R (2010) Manipulation of single electron spin in a gaas quantum dot through the application of geometric phases: the Feynman disentangling technique. Phys Rev B 82:195306ADSCrossRefGoogle Scholar
  17. 17.
    Prabhakar S, Raynolds JE, Melnik R (2011) Manipulation of the landé g factor in inas quantum dots through the application of anisotropic gate potentials: exact diagonalization, numerical, and perturbation methods. Phys Rev B 84:155208ADSCrossRefGoogle Scholar
  18. 18.
    Prabhakar S, Melnik R, Bonilla LL (2012) The influence of anisotropic gate potentials on the phonon induced spin-flip rate in GaAs quantum dots. Appl Phys Lett 100:023108ADSCrossRefGoogle Scholar
  19. 19.
    Prabhakar S, Melnik R, Bonilla LL (2013) Electrical control of phonon-mediated spin relaxation rate in semiconductor quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys Rev B 87:235202ADSCrossRefGoogle Scholar
  20. 20.
    Prabhakar S, Melnik R, Bonilla L (2014) Gate control of Berry phase in III–V semiconductor quantum dots. Phys Rev B 89:245310ADSCrossRefGoogle Scholar
  21. 21.
    Prabhakar S, Melnik R, Inomata A (2014) Geometric spin manipulation in semiconductor quantum dots. Appl Phys Lett 104:142411ADSCrossRefGoogle Scholar
  22. 22.
    Pryor CE, Flatté ME (2006) Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys Rev Lett 96:026804ADSCrossRefGoogle Scholar
  23. 23.
    Pryor CE, Flatté ME (2007) Erratum: Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys Rev Lett 99:179901ADSCrossRefGoogle Scholar
  24. 24.
    Sousa R, Sarma S (2003) Gate control of spin dynamics in III-V semiconductor quantum dots. Phys Rev B 68:155330ADSCrossRefGoogle Scholar
  25. 25.
    Stano P, Fabian J (2006) Orbital and spin relaxation in single and coupled quantum dots. Phys Rev B 74:045320ADSCrossRefGoogle Scholar
  26. 26.
    Stern F, Sarma S (1984) Electron energy levels in GaAs-\(\mathrm{Ga}_{1-x}\mathrm{Al}_{x}\mathrm{As}\) heterojunctions. Phys Rev B 30:840ADSCrossRefGoogle Scholar
  27. 27.
    Takahashi S, Deacon RS, Yoshida K, Oiwa A, Shibata K, Hirakawa K, Tokura Y, Tarucha S (2010) Large anisotropy of the spin-orbit interaction in a single InAs self-assembled quantum dot. Phys Rev Lett 104:246801ADSCrossRefGoogle Scholar
  28. 28.
    von Allmen P (1992) Conduction subbands in a GaAs/\(\mathrm{Al}_{\mathit{x}}\mathrm{Ga}_{1\mathrm{-}\mathit{x}}\) As quantum well: comparing different k⋅ p models. Phys Rev B 46:15382ADSCrossRefGoogle Scholar
  29. 29.
    Woods LM, Reinecke TL, Lyanda-Geller Y (2002) Spin relaxation in quantum dots. Phys Rev B 66:161318ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.MS2Discovery Interdisciplinary Research Institute, M²NeT LaboratoryWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations