Advertisement

Metal Oxide Based Biosensors for the Detection of Dangerous Biological Compounds

  • A. V TereshchenkoEmail author
  • V. A. Smyntyna
  • I. P Konup
  • S. A Geveliuk
  • M. F. Starodub
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

In this report an application of some metal oxide nanostructures as a biosensor platform for the detection of dangerous biological compounds (Bovine leucosis, Salmonella) have been discussed. The attention is paid to the TiO2 nanoparticles and ZnO nanorods deposited on the flat surface. The changes in photoluminescense signal from nanostructured surface were applied as biosensor response to detect the analytes. The detection range of TiO2 based biosensor for Bovine leucosis antibodies was in the range of 2–10 \(\upmu\) g/ml. The detection range of ZnO based biosensor for Salmonella antigens was 102–106 cells/ml. The obtained results provide a good basis for the use of optical properties of metal oxide based semiconductor nanostructures in biosensor technology.

Keywords

TiO2 Nanoparticles TiO2 Surface Bovine Serum Albumin Molecule TiO2 Nanostructures Biosensor Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ming-Chung Wu, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz Á, Kónya Z, Keiski R, Su W-F, Jantunen H, Kordás K (2011) Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res 4(4):360–369CrossRefGoogle Scholar
  2. 2.
    Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67CrossRefGoogle Scholar
  3. 3.
    Alla T, Mikhael B, Roman V, Volodymyr K, Valentyn S, Nikolay S, Rositza Y (2016) Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sensors and Actuators B 229:664–677CrossRefGoogle Scholar
  4. 4.
    Qiu J, Zhang Sh, Zhao H (2011) Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sens Actuators B 160:875–890CrossRefGoogle Scholar
  5. 5.
    Plugaru R, Cremades A, Piqueras J (2004) The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J Phys Condens Matter 16:S261–S268. PII: S0953-8984(04), 67008-1Google Scholar
  6. 6.
    Holford TRJ, Davis F, Higson SPJ (2012) Recent trends in antibody based sensors. Biosens Bioelectron 34:12–24CrossRefGoogle Scholar
  7. 7.
    Viswanathan S, Rani Ch, Ja-an Annie Ho (2012) Electrochemical immunosensor for multiplexed detection of food-borne pathogens using nanocrystal bioconjugates and MWCNT screen-printed electrode. Talanta 94:315–319CrossRefGoogle Scholar
  8. 8.
    Brandão D, Liébana S, Campoy S, Cortés P, Alegret S, Pividori MI (2013) Electrochemical magneto-immunosensing of Salmonella based on nano and micro-sized magnetic particles. J Phys Conf Ser 421:012020. doi:10.1088/1742-6596/421/1/012020Google Scholar
  9. 9.
    Stevanovic A, Büttner M, Zhang Zh, Yates JT Jr (2012) Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc 134:324–332CrossRefGoogle Scholar
  10. 10.
    Drbohlavova J, Chomoucka J, Hrdy R, Prasek J, Janu L, Ryvolova M, Adam V, Kizek R, Halasova T, Hubalek J (2012) Effect of nucleic acid and albumin on luminescence properties of deposited TiO2 quantum dots. Int J Electrochem Sci 7:1424–1432Google Scholar
  11. 11.
    Si P, Ding S, Yuan J, Lou XW, Kim DH (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5(9):7617–7626CrossRefGoogle Scholar
  12. 12.
    Setaro A, Lettieri S, Diamare D, Maddalena P, Malagù C, Carotta MC, Martinelli G (2008) Nanograined anatase titania-based optochemical gas detection. New J Phys 10:053030CrossRefGoogle Scholar
  13. 13.
    Mun K-Sh, Alvarez SD, Choi W-Yo, Sailor MJ (2010) A stable, label-free optical interferometric biosensor based on TiO2. ACS NANO 4(4):2070–2076CrossRefGoogle Scholar
  14. 14.
    Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232–239Google Scholar
  15. 15.
    Balida V, Ferrer JF (1977) Expression of the bovine leukemia virus and its internal antigen in blood lymphocytes. Proc Soc Exp Biol Med 156:388–391CrossRefGoogle Scholar
  16. 16.
    Matthews R (1979) Classification and nomenclature of viruses. Int Virol 12:128–296Google Scholar
  17. 17.
    Wu M-Ch, Sápi A, Avila A, Szabó M, Hiltunen J, Huuhtanen M, Tóth G, Kukovecz Á, Kónya Z, Keiski R, Su W-F, Jantunen H, Kordás K (2011) Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: decomposition of organic dyes and efficient H2 generation from ethanol–water mixtures. Nano Res 4(4):360–369CrossRefGoogle Scholar
  18. 18.
    Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G (2009) Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors. Prog Mater Sci 54:1–67CrossRefGoogle Scholar
  19. 19.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  20. 20.
    Qiu J, Zhang Sh, Zhao H (2011) Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sens Actuators B 160:875–890CrossRefGoogle Scholar
  21. 21.
    Plugaru R, Cremades A, Piqueras J (2004) The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J Phys Condens Matter 16:S261–S268. PII: S0953-8984(04) 67008-1Google Scholar
  22. 22.
    Preclíková J, Galá P, Trojánek F, Daniš S, Rezek B, Gregora I, Němcová Y, Malý P (2010) Nanocrystalline titanium dioxide films: influence of ambient conditions on surface- and volume-related photoluminescence. J Appl Phys 108:113502ADSCrossRefGoogle Scholar
  23. 23.
    Stevanovic A, Büttner M, Zhang Zh, Yates JT Jr (2012) Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc 134:324–332CrossRefGoogle Scholar
  24. 24.
    Drbohlavova J, Chomoucka J, Hrdy R, Prasek J, Janu L, Ryvolova M, Adam V, Kizek R, Halasova T, Hubalek J (2012) Effect of nucleic acid and albumin on luminescence properties of deposited TiO2 quantum dots. Int J Electrochem Sci 7:1424–1432Google Scholar
  25. 25.
    Si P, Ding S, Yuan J, Lou XW, Kim DH (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5(9):7617–7626CrossRefGoogle Scholar
  26. 26.
    Mercado C, Seeley Z, Bandyopadhyay A, Bose S, McHale JL (2011) Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing. ACS Appl Mater Interfaces 3:2281–2288CrossRefGoogle Scholar
  27. 27.
    Nair PB, Justinvictor VB, Daniel GP, Joy K, Ramakrishnan V, Thomas PV (2011) Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Appl Surf Sci 257:10869–10875ADSCrossRefGoogle Scholar
  28. 28.
    Li X, Gao C, Wang J, Lu B, Chen W, Song J, Zhang Sh, Zhang Zh, Pan X, Xie E (2012) TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. J Power Sources 214:244–250CrossRefGoogle Scholar
  29. 29.
    Viter R et al (2012) Novel immune TiO2 photoluminescence biosensors for leucosis detection. Procedia Eng 47:338–341CrossRefGoogle Scholar
  30. 30.
    Smyntyna V et al (2012) ZnO nanorods room temperature photoluminescence biosensors for salmonella detection. In: Frontiers in optics, Rochester. Laser Science, vol XXVIII, 14–18 Oct 2012Google Scholar
  31. 31.
    Viter R et al (2014) Application of room temperature photoluminescence from ZnO nanorods for salmonella detection. IEEE Sens J 14(6):2028–2034CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. V Tereshchenko
    • 1
    Email author
  • V. A. Smyntyna
    • 2
  • I. P Konup
    • 1
  • S. A Geveliuk
    • 1
  • M. F. Starodub
    • 3
  1. 1.Odessa National I.I. Mechnikov UniversityOdessaUkraine
  2. 2.Department of Experimental Physics I.I. Mechnikov,Odessa National I.I. Mechnikov UniversityOdessaUkraine
  3. 3.National University of Life and Environmental SciencesKyivUkraine

Personalised recommendations