Diagnostic of Resonant Properties of Au-PTFE Nanostructures for Sensor Applications

  • L. S Maksimenko
  • S. P RudenkoEmail author
  • M. O Stetsenko
  • I. E Matyash
  • O. M Mischuk
  • Yu. V Kolomzarov
  • B. K SerdegaEmail author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Diagnostic of nanocomposite films formed by gold nanoparticles embedded in a polytetrafluorethylene matrix has been performed utilizing modulation polarization spectroscopy technique. The dependencies of annealing influence on morphology structure and LSPR parameters of Au-PTFE films were studied and discussed. Effective optical parameters of Au-PTFE films were obtained. Two types of LSPR were detected: the first is on isolated non-interacting Au NPs and the second – between Au NPs caused by dipole fields’ interactions. The experimental data were confirmed by theoretical calculations. Radiative and non-radiative modes of surface plasmons were studied. Plasma frequencies were obtained for Au-PTFE films with unheated structure and annealed at temperatures of 300 and 520 C by measuring of spectral characteristics of the angle of isotropic reflection \(\theta _{\rho =0}(\lambda )\).


Localize Surface Plasmon Resonance Isotropic Reflection Mass Thickness Resonant Parameter PTFE Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupe F (2006) Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 17:3499–3505ADSCrossRefGoogle Scholar
  3. 3.
    Siegel J, Kvítek O, Kolská Z, Slepicka P, Svorcík V (2012) Gold nanostructures prepared on solid surface. In: Pardhi Y (ed) Metallurgy – advances in materials and processes. InTech, pp 43–70. doi: 10.5772/51617 Google Scholar
  4. 4.
    Miyake S, Shindo T (2013) Deposition and tribological properties of multilayer and mixed films composed of gold and polytetrafluoroethylene. Thin Solid Films 527:210–221ADSCrossRefGoogle Scholar
  5. 5.
    Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional applications. Adv Eng Mater 12(12):1177–1190CrossRefGoogle Scholar
  6. 6.
    Zvatora P, Rezanka P, Procopec V, Siegel J, Svorcík V (2011) Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy. Nanoscale Res Lett 6:366ADSCrossRefGoogle Scholar
  7. 7.
    Smausza T, Kecskemétia G, Csizmadiaa T, Benedekb F, Hoppa B (2013) Study on the applicability of polytetrafluoroethylene–silver composite thin films as sensor material. Appl Surf Sci 278:117–121ADSCrossRefGoogle Scholar
  8. 8.
    Mitsushio M, Nagaura A, Yoshidome T, Higo M (2015) Molecular selectivity development of Teflon AF1600-coatedgold-deposited surface plasmon resonance-based glass rod sensor. Prog Organ Coat 79:62–67CrossRefGoogle Scholar
  9. 9.
    Zhao J, Zhang X, Yonzon Ch R, Haes AJ, Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):219–228CrossRefGoogle Scholar
  10. 10.
    Onodera T, Toko K (2014) Towards an electronic dog nose: surface plasmon resonance immunosensor for security and safety. Sensors 14:16586–16616CrossRefGoogle Scholar
  11. 11.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  12. 12.
    Maier SA (2007) Plasmonics: fundamental and application. Springer, New YorkGoogle Scholar
  13. 13.
    Biswas A, Aktas OC, Schurmann U, Saeed U, Zaporojtchenko V, Faupel F, Strunskus T (2004) Tunable multipole plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. Appl Phys Lett 84(14):2655ADSCrossRefGoogle Scholar
  14. 14.
    Serdega BK, Rudenko SP, Maksimenko LS, Matyash IE (2011) Plasmonic optical properties and the polarization modulation technique. In: Mishchenko MI, Yatskiv Ya S, Rosenbush VK, Videen G (eds) Polarimetric detection, characterization and remote sensing (NATO Science for Peace and Security Series C: Environmental Security). Springer Science+Business Media B.V., pp 473–500Google Scholar
  15. 15.
    Kaganovich EB, Kravchenko SA, Maksimenko LS, Manoilov EG, Matyash IE, Mishchuk ON, Rudenko SP, Serdega BK (2011) Polarization properties of porous gold and silver films. Opt Spectrosc 110(4):513–521ADSCrossRefGoogle Scholar
  16. 16.
    Grynko DA, Barabash Yu M, Maksimenko LS, Matyash IE, Mishchuk ON, Rudenko SP, Serdega BK (2012) Modulation polarimetry of topological effects in films of gold-organic nanocomposites. Phys Solid State 54(11):146–153CrossRefGoogle Scholar
  17. 17.
    Fedorenko L, Matyash I, Kazantseva Z, Rudenko S, Kolomiychenko Ya (2014) Laser-assisted implantation of gold nanoparticles, formed under surface plasmon-polariton resonant conditions in polymer layer. Appl Surf Sci 290:1–5ADSCrossRefGoogle Scholar
  18. 18.
    Gritsenko KP, Krasovsky AM (2003) Thin-film deposition of polymers by vacuum degradation. Chem Rev 103(9):3607–3650CrossRefGoogle Scholar
  19. 19.
    Grytsenko KP (2008) Growth mechanism, properties and applications of vacuum-deposited PTFE films. Russ J Chem Soc 52(3):112–123Google Scholar
  20. 20.
    Grytsenko K, Schrader S (2005) Nanoclusters in polymer matrices prepared by co-deposition from a gas phase. Adv Colloid Interface Sci 116:263–276CrossRefGoogle Scholar
  21. 21.
    Goncharenko AV, Grynko DO, Grytsenko KP, Lozovski VZ (2005) Preparation and optical properties of Au/teflon nanocomposites. J Nanosci Nanotechnol 5(11):1919–1924CrossRefGoogle Scholar
  22. 22.
    Grytsenko K, Lozovski V, Strilchuk G, Schrader S (2012) Evaluation of the mechanism of the gold cluster growth during heating of the composite gold-polytetrafluoroethylene thin film. Nanomaterials 2(4):366–378CrossRefGoogle Scholar
  23. 23.
    Romanyuk VR, Kondratenko OS, Fursenko OV et al (2008) Thermally induced changes in thin gold films detected by polaritonic ellipsometry. Mater Sci Eng B 149:285–291CrossRefGoogle Scholar
  24. 24.
    Worsch Ch, Kracker M, Wisniewski W, Rüssel Ch (2012) Optical properties of self assembled oriented island evolution of ultra-thin gold layers. Thin Solid Films 520:4941–4946ADSCrossRefGoogle Scholar
  25. 25.
    Madorsky SL, Hart VE, Straus S, Sedlak VA (1953) Thermal degradation of tetrafluoroethylene and hydrofluoroethylene polymers in a vacuum. J Natl Bur Stand 51(6):327–333CrossRefGoogle Scholar
  26. 26.
    Chen B, Mokume M, Liu C, Hayashi K (2014) Structure and localized surface plasmon tuning of sputtered Au nano-islands through thermal annealing. Vacuum 110:94–101ADSCrossRefGoogle Scholar
  27. 27.
    Berezhinsky LJ, Maksimenko LS, Matyash IE, Rudenko SP, Serdega BK (2008) Polarization modulation spectroscopy of surface plasmon resonance. Opt Spectrosc 105(2):257–264ADSCrossRefGoogle Scholar
  28. 28.
    Jasperson SN, Schnatterly SE (1969) An improved method for high reflectivity ellipsometry based on a new polarization modulation technique. Rev Sci Instrum 40(6):761ADSCrossRefGoogle Scholar
  29. 29.
    Berezhinski LI, Litvin OS, Maksimenko LS, Matyash IE, Rudenko SP, Serdega BK (2009) Size effects in the internal reflection in gold cluster films in polarization modulation experiments. Opt Spectrosc 107(2):264–269ADSCrossRefGoogle Scholar
  30. 30.
    Kaganovich EB, Kizyak SA, Manoilov EG, Maksimenko LS, Matyash IE, Rudenko SP, Serdega BK (2009) Polarization-modulation spectroscopy of the surface plasmon resonance in gold nanostructures obtained by the method of pulsed laser deposition. Ukr J Phys 54(6):621–626Google Scholar
  31. 31.
    Siegel J, Lyutakov O, Rybka V, Kolská Z, Švorčík V (2011) Properties of gold nanostructures sputtered on glass. Nanoscale Res Lett 6:96ADSCrossRefGoogle Scholar
  32. 32.
    Dalacu D, Martinu L (2001) Optical properties of discontinuous gold films: finite-size effects. J Opt Soc Am B 18(1):85–92ADSCrossRefGoogle Scholar
  33. 33.
    Choi B-h, Lee H-H, Jin S, Chun S, Kim S-H (2007) Characterization of the optical properties of silver nanoparticle films. Nanotechnology 18:075706ADSCrossRefGoogle Scholar
  34. 34.
    Dmitruk NL, Goncharenko AV, Venger EF (2009) Optics of small particles and composite media. Naukova Dumka, KyivGoogle Scholar
  35. 35.
    Zamkovets AD, Kachan SM, Ponyavina AN (2003) Optical properties of thin-film metal-dielectric nanocomposites. Phys Chem Solid State 4(4):627–631Google Scholar
  36. 36.
    Xu G, Tazawa M, Jin P, Nakao S (2005) Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence. Appl Phys A 80:1535–1540ADSCrossRefGoogle Scholar
  37. 37.
    Hutter E, Fendler J (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1705CrossRefGoogle Scholar
  38. 38.
    Gupta G, Tanaka D, Ito Shibata Y, Shimojo M, Furuya K, Mitsui K, Kajikawa K (2009) Absorption spectroscopy of gold nanoisland films: optical and structural characrerization. Nanotechnology 20:025703ADSCrossRefGoogle Scholar
  39. 39.
    Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron 38:504–529ADSCrossRefGoogle Scholar
  40. 40.
    Maaroof AI, Gentle A, Smith GB, Cortie MB (2007) Bulk and surface plasmons in highly nanoporous gold films. J Phys D Appl Phys 40:5675–5682ADSCrossRefGoogle Scholar
  41. 41.
    Belahmar A, Chouiyakh A (2014) Influence of the fabrication conditions on the formation and properties of gold nanoparticles in alumina matrix produced by cosputtering. Int J Nano Mater Sci 3(1):16–29Google Scholar
  42. 42.
    Dmitruk NL, Litovchenko VG, Strizhevsky VL (1989) Surface polaritons in semiconductors and dielectrics. Naukova Dumka, KievGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • L. S Maksimenko
    • 1
  • S. P Rudenko
    • 1
    Email author
  • M. O Stetsenko
    • 1
  • I. E Matyash
    • 1
  • O. M Mischuk
    • 1
  • Yu. V Kolomzarov
    • 1
  • B. K Serdega
    • 1
    Email author
  1. 1.V.E. Lashkaryov Institute of Semiconductors PhysicsNational Academy of Sciences of Ukraine (NASU) Nauky ProspectKyivUkraine

Personalised recommendations