Advertisement

Physical Properties of \((\mathbf{As}_{\mathbf{2}}\mathbf{Se}_{\mathbf{3}})_{\mathbf{1}-x}: \mathbf{Sn}_{x}\) and \((\mathbf{As}_{\mathbf{4}}\mathbf{S}_{\mathbf{3}}\mathbf{Se}_{\mathbf{3}})_{\mathbf{1}-x}: \mathbf{Sn}_{x}\) Glasses

  • O. V. Iaseniuc
  • D. V. HareaEmail author
  • E. E. Harea
  • G. F. Volodina
  • M. S. Iovu
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Experimental results on some physical and optical properties of (As2Se\(_{3})_{1-x}\):Sn x and (As4S3Se\(_{3})_{1-x}\):Sn x (x = 0 ÷ 10 at %) glasses and amorphous films (\(d \sim 2.0\,\upmu\) m) are presented. The bulk chalcogenide glasses are studied by X-ray diffraction spectroscopy and nanoindentation methods. It is established that the addition of these amounts of tin (x = 0 ÷ 10 at %) does not lead to significant changes in the physical properties of the glass, such as values of stress and Young’s modulus related to the modification of the density and compactness. The XRD measurements show that the Sn impurities in the (As4S3Se\(_{3})_{1-x}\):Sn x do not significantly change the shape of the first sharp diffraction peak (FSDP) of the X-ray diffraction patterns either; the intensity and the position of the FSDP nonmonotonically depend on the Sn concentration. It has been found that the addition of these amounts of tin in (As4S3Se\(_{3})_{1-x}\):Sn x does not lead to significant changes in the glass physical properties, such as values of stress and Young’s modulus related to the modification of the density and compactness. The study of the photoplastic effect is performed in situ, with illumination of the bulk and thin film samples during indentation as well as their indentation after illumination with a green laser (\(\lambda = 532\) nm) at a power of P = 50 mV/cm2. The hardness is calculated from load-displacement curves by the Oliver–Pharr method. A sharp increase in hardness is registered if the tin concentration exceeds a value of 3–4 % Sn. The hardness H of (As2Se\(_{3})_{1-x}\):Sn x films varies between 115 and 130 kg/mm2. It is found that the hardness H of amorphous thin films is generally higher than the hardness of bulk samples with the same chemical composition. In this study, we are focused on the mechanical characteristics of high-purity As2Se3:Sn x thin films.

Keywords

Chalcogenide Glass Amorphous Film Thin Film Sample Base Glass Medium Range Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Inoue A, Shen B, Nishiyama N, Miller M, Liaw P (eds) (2008) Bulk metallic glasses. Springer, New York, pp 1–25CrossRefGoogle Scholar
  2. 2.
    Inoue A, Shen B, Takeuchi A (2008) Mater Trans 47:1275CrossRefGoogle Scholar
  3. 3.
    Inoue A (2009) Mater Sci Eng A 304–306:1Google Scholar
  4. 4.
    Johnson WL (1999) MRS Bull 24:42CrossRefGoogle Scholar
  5. 5.
    Zakery A, Elliot SR (2007) Optical nonlinearities in chalcogenide glasses and their applications. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  6. 6.
    Andriesh AM, Iovu MS, Shutov SD (2002) Optoel J Adv Mater 4(3):631Google Scholar
  7. 7.
    Nemec P, Jedelsky J, Frumar M, Štábl M, Vlček M (2004) J Phys Chem Solids 65(7):1253ADSCrossRefGoogle Scholar
  8. 8.
    Gerbreders A, Teteris J (2007) J Optoel Adv Mater 9(10):3164Google Scholar
  9. 9.
    Reinfelde M, Teteris J (2011) J Optoel Adv Mater 13(11–12):1531Google Scholar
  10. 10.
    Iovu M, Shutov S, Popescu M (2002) NonCryst J Solids 924:299Google Scholar
  11. 11.
    Boolchand P, Georgiev D, Iovu M (2005) Chalcogenide Lett 2(4):27Google Scholar
  12. 12.
    Iovu M, Boolchand P, Georgiev D (2005) J Optoel Adv Mater 7(2):763Google Scholar
  13. 13.
    Iovu M, Harea D, Colomeico E (2008) J Optoel Adv Mater 10(4):862Google Scholar
  14. 14.
    Yee LY, Chaudhri MM (2006) Mech Mater 38:1213CrossRefGoogle Scholar
  15. 15.
    Trunov ML, Bilanich VS (2003) J Optoel Adv Mater 5(5):1085Google Scholar
  16. 16.
    Yannopoulos SN, Trunov ML (2009) Phys Status Solidi B 246(8):1773ADSCrossRefGoogle Scholar
  17. 17.
    Osipyan Yu A, Savchenko IB (1968) Pis’ma Zh Eksp Teor Fiz 7:130Google Scholar
  18. 18.
    Gerasimov AB, Chiradze GD, Kutivadze NG (2001) Semiconductors 35:72ADSCrossRefGoogle Scholar
  19. 19.
    Carlsson L, Svensson C (1970) J Appl Phys 41:1652ADSCrossRefGoogle Scholar
  20. 20.
    Matsuda A, Mizuno H, Takayama T, Saito M, Kikuchi M (1974) Appl Phys Lett 25:411ADSCrossRefGoogle Scholar
  21. 21.
    Igo T, Noguchi Y, Nagai H (1974) Appl Phys Lett 25:193ADSCrossRefGoogle Scholar
  22. 22.
    Koseki H, Odajima A (1982) Jpn J Appl Phys 21:424ADSCrossRefGoogle Scholar
  23. 23.
    Iovu MS, Shutov SD, Toth L (1996) Physica Status Solidi (b) 195:149ADSCrossRefGoogle Scholar
  24. 24.
    Iovu MS, Syrbu NN, Shutov SD, Vasiliev IA, Rebeja S, Colomeico E, Popescu M, Sava F (1999) Physica Status Solidi (a) 175(2):623ADSCrossRefGoogle Scholar
  25. 25.
    Iovu MS, Shutov SD, Arkhipov VI, Adriaenssens GJ (2002) Noncryst J Solids 299/302:1008Google Scholar
  26. 26.
    Boolchand P, Georgiev DG, Iovu MS (2005) Chalcogenide Lett 2(4):27Google Scholar
  27. 27.
    Iovu MS, Harea DV, Cojocaru IA, Colomeico EP, Prisacari A, Ciorba VG (2007) J Optoel Adv Mater 9(10):3138Google Scholar
  28. 28.
    Popescu M, Andries A, Ciumas V, Iovu M, Sutov S, Tiuleanu D (1996) Fizica sticlelor calcogenice. Editura Stiintifica Bucuresti – I.E.P. Stiinta, ChisinauGoogle Scholar
  29. 29.
    Tatarinova L (1983) The structure of amorphous solids and liquids. Nauka, MoscowGoogle Scholar
  30. 30.
    Popescu M (1996) In: Andriesh A, Bertolotti M (eds) Physics and applications of noncrystalline semiconductors in optoelectronics, vol 36, p 215Google Scholar
  31. 31.
    Popescu M, Tudorica F, Andriesh A, Iovu M, Shutov S, Bulgaru M, Colomeyko E, Malkov S, Verlan V, Leonovici M, Mihai V, Steflea M (1995) Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si tehnica 3:3Google Scholar
  32. 32.
    Borisova ZU (1981) Glassy semiconductors. Plenum Press, New York, pp 215–220 and references thereinGoogle Scholar
  33. 33.
    Borisova ZU (1983) Chalcogenide semiconducting glasses. Khimiya, St. Petersburg. In RussianGoogle Scholar
  34. 34.
    Boyarskaya Yu S (1986) Physics of microindentitation processes. Stiinta, Kishinev. In RussianGoogle Scholar
  35. 35.
    Kumar P, Thangaraj R (2006) J Noncryst Solids 352:2288ADSCrossRefGoogle Scholar
  36. 36.
    Sava F (2001) J Optoel Adv Mater 3(2):425Google Scholar
  37. 37.
    Shchurova NN, Savchenko ND (2001) J Optoel Adv Mater 3(2):491Google Scholar
  38. 38.
    Trunov ML (2008) J Phys D: Appl Phys 41:074011CrossRefGoogle Scholar
  39. 39.
    Yannopoulos SN, Trunov ML (2009) Phys Status Solidi B 246(8):1773ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • O. V. Iaseniuc
    • 1
  • D. V. Harea
    • 1
    Email author
  • E. E. Harea
    • 1
  • G. F. Volodina
    • 1
  • M. S. Iovu
    • 1
  1. 1.Institute of Applied PhysicsChisinauRepublic of Moldova

Personalised recommendations