Skip to main content

Atomic Collapse in Graphene

  • Conference paper
  • First Online:
  • 683 Accesses

Abstract

When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666

    Article  ADS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438(7065):197

    Article  ADS  Google Scholar 

  3. Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81(1):109

    Article  ADS  Google Scholar 

  4. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Nature 438(7065):201

    Article  ADS  Google Scholar 

  5. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Science 315(5817):1379

    Article  ADS  Google Scholar 

  6. Gunlycke D, Lawler H, White C (2007) Phys Rev B 75(8):085418

    Article  ADS  Google Scholar 

  7. Katsnelson MI, Novoselov KS, Geim AK (2006) Nat Phys 2(9):620

    Article  Google Scholar 

  8. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321(5887):385

    Article  ADS  Google Scholar 

  9. Peres NMR, Guinea F, Castro Neto AH (2006) Phys Rev B 73(12):125411

    Article  ADS  Google Scholar 

  10. Ando T (2006) J Phys Soc Jpn 75(7):074716

    Article  ADS  Google Scholar 

  11. Hwang E, Adam S, Sarma S (2007) Phys Rev Lett 98(18):186806

    Article  ADS  Google Scholar 

  12. Dirac PAM (1928) Proc R Soc A Math Phys Eng Sci 117(778):610

    Article  ADS  Google Scholar 

  13. Pomeranchuk I, Smorodinsky Y (1945) J Phys 9:97

    Google Scholar 

  14. Zeldovich Y, Popov VS (1972) Sov Phys Usp 14:673

    Article  ADS  Google Scholar 

  15. Greiner W, Müller B, Rafelski J (1985) Quantum electrodynamics of strong fields. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  16. Schweppe J, Gruppe A, Bethge K, Bokemeyer H, Cowan T, Folger H, Greenberg J, Grein H, Ito S, Schule R, Schwalm D, Stiebing K, Trautmann N, Vincent P, Waldschmidt M (1983) Phys Rev Lett 51(25):2261

    Article  ADS  Google Scholar 

  17. Cowan T, Backe H, Begemann M, Bethge K, Bokemeyer H, Folger H, Greenberg J, Grein H, Gruppe A, Kido Y, Klüver M, Schwalm D, Schweppe J, Stiebing K, Trautmann N, Vincent P (1985) Phys Rev Lett 54(16):1761

    Article  ADS  Google Scholar 

  18. Kotov VN, Uchoa B, Pereira VM, Guinea F, Castro Neto AH (2012) Rev Mod Phys 84(3):1067

    Article  ADS  Google Scholar 

  19. Das Sarma S, Adam S, Hwang EH, Rossi E (2011) Rev Mod Phys 83(2):407

    Article  ADS  Google Scholar 

  20. Khalilov VR, Ho CL (1998) Mod Phys Lett A 13(08):615

    Article  ADS  Google Scholar 

  21. Pereira VM, Nilsson J, Castro Neto AH (2007) Phys Rev Lett 99(16):166802

    Article  ADS  Google Scholar 

  22. Shytov AV, Katsnelson MI, Levitov LS (2007) Phys Rev Lett 99(24):246802

    Article  ADS  Google Scholar 

  23. Shytov AV, Katsnelson MI, Levitov LS (2007) Phys Rev Lett 99(23):236801

    Article  ADS  Google Scholar 

  24. Wang Y, Brar VW, Shytov AV, Wu Q, Regan W, Tsai HZ, Zettl A, Levitov LS, Crommie MF (2012) Nat Phys 8(9):653

    Article  Google Scholar 

  25. Wang Y, Wong D, Shytov AV, Brar VW, Choi S, Wu Q, Tsai HZ, Regan W, Zettl A, Kawakami RK, Louie SG, Levitov LS, Crommie MF (2013) Science 340(6133):734

    Article  ADS  Google Scholar 

  26. DiVincenzo DP, Mele EJ (1984) Phys Rev B 29(4):1685

    Article  ADS  Google Scholar 

  27. Luican-Mayer A, Kharitonov M, Li G, Lu Cp, Skachko I, Gonçalves AMB, Watanabe K, Taniguchi T, Andrei EY (2014) Phys Rev Lett 112(3):036804

    Google Scholar 

  28. Liu Y, Weinert M, Li L (2015) Nanotechnology 26(3):035702

    Article  ADS  Google Scholar 

  29. Mao J, Jiang Y, Moldovan D, Li G, Watanabe K, Taniguchi T, Masir MR, Peeters FM, Andrei EY (2015). arXiv:1508.07667

    Google Scholar 

  30. Lehtinen O, Kotakoski J, Krasheninnikov AV, Tolvanen A, Nordlund K, Keinonen J (2010) Phys Rev B 81(15):153401

    Article  ADS  Google Scholar 

  31. Pereira VM, Lopes dos Santos JMB, Castro Neto AH (2008) Phys Rev B 77(11):115109

    Google Scholar 

  32. Pereira VM, Guinea F, Lopes dos Santos JMB, Peres NMR, Castro Neto AH (2006) Phys Rev Lett 96(3):036801

    Google Scholar 

  33. Ding F (2005) Phys Rev B – Condens Matter Mater Phys 72(24):1

    Google Scholar 

  34. Repp J (2004) Science 305(5683):493

    Article  ADS  Google Scholar 

  35. Zhao AD, Li QX, Chen L, Xiang HJ, Wang WH, Pan S, Wang B, Xiao XD, Yang JL, Hou JG, Zhu QS (2005) Science 309:1542

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. We acknowledge the very fruitful collaboration with the Eva Andrei group at Rutgers University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Peeters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Moldovan, D., Peeters, F.M. (2016). Atomic Collapse in Graphene. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_1

Download citation

Publish with us

Policies and ethics