Introduction to properties of ionic liquid mixtures

  • Suojiang Zhang
  • Qing Zhou
  • Xingmei Lu
  • Yuting Song
  • Xinxin Wang

Abstract

In this chapter introduction to various properties of ionic liquid mixtures is described. The properties discussed here include volumetric properties, transport properties and refractive Index. The vapor-liquid, liquid-liquid and solid-liquid equilibriums of the mixtures are also presented. Henry's constant, speed of sound and viscosity of different ionic liquids are also discussed herein.

References:

  1. [1].
    Geppert-Rybczynska M, Heintz A, Lehmann JK, Golus A (2010) Volumetric Properties of Binary Mixtures Containing Ionic Liquids and Some Aprotic Solvents. Journal of Chemical and Engineering Data 55 (9):4114-4120.CrossRefGoogle Scholar
  2. [2].
    Connors KA, Wright JL (1989) DEPENDENCE OF SURFACE-TENSION ON COMPOSITION OF BINARY AQUEOUS ORGANIC SOLUTIONS. Analytical Chemistry 61 (3):194-198.CrossRefGoogle Scholar
  3. [3].
    Ren R, Zuo Y, Zhou Q, Zhang HL, Zhang SJ (2011) Density, Excess Molar Volume and Conductivity of Binary Mixtures of the Ionic Liquid 1,2-Dimethyl-3-hexylimidazolium Bis(trifluoromethylsulfonyl)imide and Dimethyl Carbonate. Journal of Chemical and Engineering Data 56 (1):27-30.CrossRefGoogle Scholar
  4. [4].
    Rodriguez H, Brennecke JF (2006) Temperature and composition dependence of the density and viscosity of binary mixtures of water plus ionic liquid. Journal of Chemical and Engineering Data 51 (6):2145-2155.CrossRefGoogle Scholar
  5. [5].
    Zhou Q, Wang LS, Chen HP (2006) Densities and Viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + H2O binary mixtures from (303.15 to 353.15) K. Journal of Chemical and Engineering Data 51 (3):905-908.CrossRefGoogle Scholar
  6. [6].
    Matkowska D, Hofman T (2013) Volumetric properties of the ionic liquids: [C6mim][MeSO4], [C6mim][EtSO4], [C4mim][EtSO4] and their mixtures with methanol or ethanol. Journal of Molecular Liquids 177:301-305.CrossRefGoogle Scholar
  7. [7].
    Matkowska D, Hofman T (2013) Volumetric Properties of the { [Cmim][MeSO] + (1 - )MeOH} System at Temperatures from (283.15 to 333.15) K and Pressures from (0.1 to 35) MPa. J Solution Chem 42 (5):979-990.CrossRefGoogle Scholar
  8. [8].
    Hosseini SM, Papari MM, Fadaei-Nobandegani F, Moghadasi J (2013) A Simple Equation for Predicting the Volumetric Properties of Mixtures Involving Ionic Liquids. J Solution Chem 42 (9):1854-1862.CrossRefGoogle Scholar
  9. [9].
    Spencer CF, Danner RP (1972) Improved equation for prediction of saturated liquid density. Journal of Chemical and Engineering Data 17 (2):236-241.CrossRefGoogle Scholar
  10. [10].
    BE P, JM P, JP. OC (2001) The Properties of gases and liquids. 5th edn. McGraw-Hill, New York.Google Scholar
  11. [11].
    Yousefi F (2012) Correlation of volumetric properties of binary mixtures of some ionic liquids with alcohols using equation of state. Ionics 18 (8):769-775.CrossRefGoogle Scholar
  12. [12].
    Tao FM, Mason EA (1994) Statistical-Mechanical equation of state for Nanpolar fluids: Prediction of phase boundaries. Journal of Chemical Physics 100 (12):9075-9087.CrossRefGoogle Scholar
  13. [13].
    Hosseini SM (2010) A perturbed hard-sphere equation of state for phosphonium-, pyridinium-, and pyrrolidinium-based ionic liquids. Ionics 16 (6):571-575.CrossRefGoogle Scholar
  14. [14].
    Hosseini SM, Moghadasi J, Papari MM (2010) A perturbed hard-sphere equation of state extended to imidazolium-based ionic liquids. Ionics 16 (8):757-761.CrossRefGoogle Scholar
  15. [15].
    Hosseini SM, Moghadasi J, Papari MM, Nobandegani FF (2011) Modeling the volumetric properties of mixtures involving ionic liquids using perturbed hard-sphere equation of state. Journal of Molecular Liquids 160 (2):67-71.CrossRefGoogle Scholar
  16. [16].
    Boublik T (1970) Hard-sphere equation of state. Journal of Chemical Physics 53 (1):471-&.CrossRefGoogle Scholar
  17. [17].
    Hosseini SM, Moghadasi J, Papari MM, Nobandegani FF (2012) Modeling the Volumetric Properties of Ionic Liquids Using Modified Perturbed Hard-Sphere Equation of State: Application to Pure and Binary Mixtures. Industrial & Engineering Chemistry Research 51 (2):758-766.CrossRefGoogle Scholar
  18. [18].
    Letcher TM, Baxter RC (1989) Application of the Prigogine-Flory-Patterson theory part I. Mixtures ofn-alkanes with bicyclic compounds, benzene, cyclohexane andn-hexane. J Solution Chem 18 (1):65-80.CrossRefGoogle Scholar
  19. [19].
    Treszczanowicz AJ, Benson GC (1985) Excess volumes of alkanol + alkane binary systems in terms of an association model with a Flory Contribution Term. Fluid Phase Equilibria 23 (2-3):117-135.CrossRefGoogle Scholar
  20. [20].
    Q. Z, X. L, S. Z, L. G (2014) Physicochemical Properties of Ionic Liquids. Ionic Liquids Further UnCOILed: Critical Expert Overviews. Wiley.Google Scholar
  21. [21].
    Tomida D, Kumagai A, Qiao K, Yokoyama C (2006) Viscosity of bmim PF6 and bmim BF4 at high pressure. International Journal of Thermophysics 27 (1):39-47.CrossRefGoogle Scholar
  22. [22].
    Tomida D, Kumagai A, Kenmochi S, Qiao K, Yokoyama C (2007) Viscosity of 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate at high pressure. Journal of Chemical and Engineering Data 52 (2):577-579.CrossRefGoogle Scholar
  23. [23].
    Tomida D, Kumagai A, Qiao K, Yokoyama C (2007) Viscosity of 1-butyl-3-methylimidazolium hexafluorophosphate plus CO2 mixture. Journal of Chemical and Engineering Data 52 (5):1638-1640.CrossRefGoogle Scholar
  24. [24].
    Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexaftuorophosphate. Journal of Chemical and Engineering Data 50 (5):1777-1782.CrossRefGoogle Scholar
  25. [25].
    Harris KR, Kanakubo M, Woolf LA (2006) Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. Journal of Chemical and Engineering Data 51 (3):1161-1167.CrossRefGoogle Scholar
  26. [26].
    Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Chemical and Engineering Data 52 (3):1080-1085.CrossRefGoogle Scholar
  27. [27].
    Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: Viscosity and density relationships in ionic liquids. Journal of Chemical and Engineering Data 52 (6):2425-2430.CrossRefGoogle Scholar
  28. [28].
    Harris KR, Woolf LA, Kanakubo M, Ruther T (2011) Transport Properties of N-Butyl-N-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide. Journal of Chemical and Engineering Data 56 (12):4672-4685.CrossRefGoogle Scholar
  29. [29].
    Aparicio S, Alcalde R, Garcia B, Leal JM (2009) High-Pressure Study of the Methylsulfate and Tosylate Imidazolium Ionic Liquids. Journal of Physical Chemistry B 113 (16):5593-5606.CrossRefGoogle Scholar
  30. [30].
    Ahosseini A, Scurto AM (2008) Viscosity of imidazolium-based ionic liquids at elevated pressures: Cation and anion effects. International Journal of Thermophysics 29 (4):1222-1243.CrossRefGoogle Scholar
  31. [31].
    Zhu AL, Wang JJ, Han LJ, Fan MH (2009) Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chemical Engineering Journal 147 (1):27-35.CrossRefGoogle Scholar
  32. [32].
    Tomida D, Kenmochi S, Qiao K, Bao QX, Yokoyama C (2011) Viscosity of ionic liquid mixtures of 1-alkyl-3-methylimidazolium hexafluorophosphate + CO2. Fluid Phase Equilibria 307 (2):185-189.CrossRefGoogle Scholar
  33. [33].
    Domanska U, Laskowska M (2009) Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Alcohols}. Journal of Chemical and Engineering Data 54 (7):2113-2119.CrossRefGoogle Scholar
  34. [34].
    Domanska U, Krolikowska M (2010) Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Heptanol, 1-Octanol, 1-Nonanol, or 1-Decanol}. Journal of Chemical and Engineering Data 55 (9):2994-3004.CrossRefGoogle Scholar
  35. [35].
    Domanska U, Laskowska M (2009) Effect of Temperature and Composition on the Density and Viscosity of Binary Mixtures of Ionic Liquid with Alcohols. J Solution Chem 38 (6):779-799.CrossRefGoogle Scholar
  36. [36].
    Shao DB, Lu XX, Fang WJ, Guo YS, Xu L (2012) Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures. Journal of Chemical and Engineering Data 57 (3):937-942.CrossRefGoogle Scholar
  37. [37].
    Gomez E, Gonzalez B, Dominguez A, Tojo E, Tojo J (2006) Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. Journal of Chemical and Engineering Data 51 (2):696-701.CrossRefGoogle Scholar
  38. [38].
    Vila J, Gines P, Pico JM, Franjo C, Jimenez E, Varela LM, Cabeza O (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids - Evidence of Vogel-Tamman-Fulcher behavior. Fluid Phase Equilibria 242 (2):141-146.CrossRefGoogle Scholar
  39. [39].
    Lashkarblooki M, Hezave AZ, Al-Ajmi AM, Ayatollahi S (2012) Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network. Fluid Phase Equilibria 326:15-20.CrossRefGoogle Scholar
  40. [40].
    Peng XM, Hu YF, Chu HD, Miao C, Li ZY, Wang ZX (2012) Prediction of density and viscosity of ternary systems C(2)q Br + C(4)q Br + H2O, C(2)q Br + C(6)q Br + H2O, and C(4)q Br + C(6)q Br + H2O at different temperatures using their binary subsystems data. Petroleum Science 9 (2):242-250.CrossRefGoogle Scholar
  41. [41].
    AJ B, LR F (2001) Electrochemical Methods, Fundamentals and Applications, vol Chapter 5 and 9. Wiley & Sons, New York.Google Scholar
  42. [42].
    JE B (2007) Handbook of Electrochemistry, vol Chapter 19. Elsevier, Amsterdam.Google Scholar
  43. [43].
    Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R (2004) Gas separations using non-hexafluorophosphate PF6 (-) anion supported ionic liquid membranes. Journal of Membrane Science 238 (1-2):57-63.CrossRefGoogle Scholar
  44. [44].
    Haumann M, Dentler K, Joni J, Riisager A, Wasserscheid P (2007) Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts. Advanced Synthesis & Catalysis 349 (3):425-431.CrossRefGoogle Scholar
  45. [45].
    Chauvin Y, Mußmann L, Olivier H (1995) Flüssige 1,3-Dialkylimidazoliumsalze als Lösungsmittel für die Katalyse in Zweiphasensystemen: durch Rhodiumkomplexe katalysierte Hydrierung, Isomerisierung und Hydroformylierung von Alkenen. Angewandte Chemie 107 (23-24):2941-2943.CrossRefGoogle Scholar
  46. [46].
    Steines S, Wasserscheid P, Driessen-Holscher B (2000) An ionic liquid as catalyst medium for stereoselective hydrogenations of sorbic acid with ruthenium complexes. Journal Fur Praktische Chemie-Chemiker-Zeitung 342 (4):348-354.CrossRefGoogle Scholar
  47. [47].
    Papageorgiou N, Athanassov Y, Armand M, Bonhote P, Pettersson H, Azam A, Gratzel M (1996) The performance and stability of ambient temperature molten salts for solar cell applications. Journal of the Electrochemical Society 143 (10):3099-3108.CrossRefGoogle Scholar
  48. [48].
    Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 46 (22):3457-3466.CrossRefGoogle Scholar
  49. [49].
    Baur JE, Wightman RM (1991) Diffusion coefficients determined with microelectrodes. Journal of Electroanalytical Chemistry 305 (1):73-81.CrossRefGoogle Scholar
  50. [50].
    Evans RG, Klymenko OV, Price PD, Davies SG, Hardacre C, Compton RG (2005) A comparative electrochemical study of diffusion in room temperature ionic liquid solvents versus acetonitrile. Chemphyschem 6 (3):526-533.CrossRefGoogle Scholar
  51. [51].
    Stokes RH (1950) An improved diaphragm-cell for diffusion studies, and some tests of the method. Journal of the American Chemical Society 72 (2):763-767.CrossRefGoogle Scholar
  52. [52].
    Gosting LJ (1950) A study of the diffusion of potassium chloride in water at 25oC with the Gouy interference method. Journal of the American Chemical Society 72 (10):4418-4422.CrossRefGoogle Scholar
  53. [53].
    Taylor G (1953) ispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 219 (1137):186-203.CrossRefGoogle Scholar
  54. [54].
    Taylor G (1954) Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 225 (1163):473-477.CrossRefGoogle Scholar
  55. [55].
    Gulari E, Brown RJ, Pings CJ (1973) Measurement of mutual diffusion coefficients and thermal diffusivities by quasi-elastic light scattering. Aiche Journal 19 (6):1196-1204.CrossRefGoogle Scholar
  56. [56].
    Czworniak KJ, Andersen HC, Pecora R (1975) Light-scattering measurement and theoretical interpretation of mutual diffusion-coefficients in binary liquid mixtures. Chemical Physics 11 (3):451-473.CrossRefGoogle Scholar
  57. [57].
    Krahn W, Schweiger G, Lucas K (1983) Light scattering measurements of mutual diffusion coefficients in binary liquid mixtures. Journal of Physical Chemistry 87 (22):4515-4519.CrossRefGoogle Scholar
  58. [58].
    Siddiqi MA, Krahn W, Lucas K (1987) Mutual diffusion coefficients in some binary liquid mixtures. Journal of Chemical and Engineering Data 32 (1):48-50.CrossRefGoogle Scholar
  59. [59].
    Rausch MH, Lehmann J, Leipertz A, Froba AP (2011) Mutual diffusion in binary mixtures of ionic liquids and molecular liquids by dynamic light scattering (DLS). Physical Chemistry Chemical Physics 13 (20):9525-9533.CrossRefGoogle Scholar
  60. [60].
    Rausch MH, Hopf L, Heller A, Leipertz A, Froba AP (2013) Binary Diffusion Coefficients for Mixtures of Ionic Liquids EMIM N(CN)(2)), EMIM NTf2 , and HMIM NTf2 with Acetone and Ethanol by Dynamic Light Scattering (DLS). Journal of Physical Chemistry B 117 (8):2429-2437.CrossRefGoogle Scholar
  61. [61].
    Tokuda H, Hayamizu K, Ishii K, Susan M, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. Journal of Physical Chemistry B 109 (13):6103-6110.CrossRefGoogle Scholar
  62. [62].
    Tokuda H, Ishii K, Susan M, Tsuzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures 10.1021/jpO53396f. Journal of Physical Chemistry B 110 (6):2833-2839.CrossRefGoogle Scholar
  63. [63].
    Tsuzuki S, Shinoda W, Saito H, Mikami M, Tokuda H, Watanabe M (2009) Molecular Dynamics Simulations of Ionic Liquids: Cation and Anion Dependence of Self-Diffusion Coefficients of Ions. Journal of Physical Chemistry B 113 (31):10641-10649.CrossRefGoogle Scholar
  64. [64].
    Sarraute S, Gomes MFC, Padua AAH (2009) Diffusion Coefficients of 1-Alkyl-3-methylimidazolium Ionic Liquids in Water, Methanol, and Acetonitrile at Infinite Dilution. Journal of Chemical and Engineering Data 54 (9):2389-2394.CrossRefGoogle Scholar
  65. [65].
    Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. Aiche Journal 1 (2):264-270.CrossRefGoogle Scholar
  66. [66].
    R.A. R, R.H. S (1965) Electrolyte Solutions. Butterworths, London.Google Scholar
  67. [67].
    D. R, J. J, R. G (2009) Thermophysical properties of ionic liquids. Topics in Current Chemistry. Springer-Verlag, Berlin Heidelberg.Google Scholar
  68. [68].
    Xu AR, Wang JJ, Zhang YJ, Chen QT (2012) Effect of Alkyl Chain Length in Anions on Thermodynamic and Surface Properties of 1-Butyl-3-methylimidazolium Carboxylate Ionic Liquids. Industrial & Engineering Chemistry Research 51 (8):3458-3465.CrossRefGoogle Scholar
  69. [69].
    Wang Y, Zhao FY, Liu YM, Hu YQ (2007) Study on surface tension of a series of 1-alkyl-3-methylimidazolium room temperature ionic liquids. Acta Chimica Sinica 65 (15):1443-1448.Google Scholar
  70. [70].
    A.W. A, A.P. G (1997) Physical chemistry of surfaces. Wiley, New York.Google Scholar
  71. [71].
    Law G, Watson PR (2001) Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17 (20):6138-6141.CrossRefGoogle Scholar
  72. [72].
    Macleod DB (1923) On a relation between surface tension and density. Transactions of the Faraday Society 19 (1):38-41.CrossRefGoogle Scholar
  73. [73].
    Deetlefs M, Seddon KR, Shara M (2006) Predicting physical properties of ionic liquids. Physical Chemistry Chemical Physics 8 (5):642-649.CrossRefGoogle Scholar
  74. [74].
    Knotts TA, Wilding WV, Oscarson JL, Rowley RL (2001) Use of the DIPPR database for development of QSPR correlations: Surface tension. Journal of Chemical and Engineering Data 46 (5):1007-1012.CrossRefGoogle Scholar
  75. [75].
    Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilibria 265 (1-2):57-65.CrossRefGoogle Scholar
  76. [76].
    Mousazadeh MH, Faramarzi E (2011) Corresponding states theory for the prediction of surface tension of ionic liquids. Ionics 17 (3):217-222.CrossRefGoogle Scholar
  77. [77].
    Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH (2012) Group contribution model for estimation of surface tension of ionic liquids. Chemical Engineering Science 78:204-208.CrossRefGoogle Scholar
  78. [78].
    Wu KJ, Zhao CX, He CH (2012) A simple corresponding-states group-contribution method for estimating surface tension of ionic liquids. Fluid Phase Equilibria 328:42-48.CrossRefGoogle Scholar
  79. [79].
    Domanska U, Pobudkowska A, Rogalski M (2008) Surface tension of binary mixtures of imidazolium and ammonium based ionic liquids with alcohols, or water: Cation, anion effect. Journal of Colloid and Interface Science 322 (1):342-350.CrossRefGoogle Scholar
  80. [80].
    Rilo E, Pico J, Garcia-Garabal S, Varela LM, Cabeza O (2009) Density and surface tension in binary mixtures of CnMIM-BF4 ionic liquids with water and ethanol. Fluid Phase Equilibria 285 (1-2):83-89.CrossRefGoogle Scholar
  81. [81].
    Jiang HC, Zhao Y, Wang JY, Zhao FY, Liu RJ, Hu YQ (2013) Density and surface tension of pure ionic liquid 1-butyl-3-methyl-imidazolium L-lactate and its binary mixture with alcohol and water. Journal of Chemical Thermodynamics 64:1-13.CrossRefGoogle Scholar
  82. [82].
    Ahosseini A, Sensenich B, Weatherley LR, Scurto AM (2010) Phase Equilibrium, Volumetric, and Interfacial Properties of the Ionic Liquid, 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide and 1-Octene. Journal of Chemical and Engineering Data 55 (4):1611-1617.CrossRefGoogle Scholar
  83. [83].
    Tariq M, Freire MG, Saramago B, Coutinho JAP, Lopes JNC, Rebelo LPN (2012) Surface tension of ionic liquids and ionic liquid solutions. Chemical Society Reviews 41 (2):829-868.CrossRefGoogle Scholar
  84. [84].
    Gardas RL, Coutinho JAP (2008) Estimation of speed of sound of ionic liquids using surface tensions and densities: A volume based approach. Fluid Phase Equilibria 267 (2):188-192.CrossRefGoogle Scholar
  85. [85].
    Paulechka YU, Zaitsau DH, Kabo GJ (2004) On the difference between isobaric and isochoric heat capacities of liquid cyclohexyl esters. Journal of Molecular Liquids 115 (2-3):105-111.CrossRefGoogle Scholar
  86. [86].
    Dzida M, Chorazewski M, Geppert-Rybczynska M, Zorebski E, Zorebski M, Zarska M, Czech B (2013) Speed of Sound and Adiabatic Compressibility of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide under Pressures up to 100 MPa. Journal of Chemical and Engineering Data 58 (6):1571-1576.CrossRefGoogle Scholar
  87. [87].
    Auerbach R (1948) Surface tension and sound velocity. Ezperientia 4:473-474.CrossRefGoogle Scholar
  88. [88].
    Gardas RL, Dagade DH, Terdale SS, Coutinho JAP, Patil KJ (2008) Acoustic and volumetric properties of aqueous solutions of imidazolium based ionic liquids at 298.15 K. Journal of Chemical Thermodynamics 40 (4):695-701.CrossRefGoogle Scholar
  89. [89].
    Govinda V, Reddy PM, Attri P, Venkatesu P, Venkateswarlu P (2013) Influence of anion on thermophysical properties of ionic liquids with polar solvent. Journal of Chemical Thermodynamics 58:269-278.CrossRefGoogle Scholar
  90. [90].
    Gonzalez EJ, Gonzalez B, Macedo EA (2013) Thermophysical Properties of the Pure Ionic Liquid 1-Butyl-1-methylpyrrolidinium Dicyanamide and Its Binary Mixtures with Alcohols. Journal of Chemical and Engineering Data 58 (6):1440-1448.CrossRefGoogle Scholar
  91. [91].
    Singh S (2002) Refractive index measurement and its applications. Physica Scripta 65 (2):167-180.CrossRefGoogle Scholar
  92. [92].
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry 3 (4):156-164.CrossRefGoogle Scholar
  93. [93].
    Seki S, Tsuzuki S, Hayamizu K, Umebayashi Y, Serizawa N, Takei K, Miyashiro H (2012) Comprehensive Refractive Index Property for Room-Temperature Ionic Liquids. Journal of Chemical and Engineering Data 57 (8):2211-2216.CrossRefGoogle Scholar
  94. [94].
    Vercher E, Llopis FJ, Gonzalez-Alfaro V, Miguel PJ, Martinez-Andreu A (2011) Refractive Indices and Deviations in Refractive Indices of Trifluoromethanesulfonate-Based Ionic Liquids in Water. Journal of Chemical and Engineering Data 56 (12):4499-4504.CrossRefGoogle Scholar
  95. [95].
    Iglesias-Otero MA, Troncoso J, Carballo E, Romani L (2007) Density and refractive index for binary systems of the ionic liquid Bmim BF4 with methanol, 1,3-dichloropropane, and dimethyl carbonate. J Solution Chem 36 (10):1219-1230.CrossRefGoogle Scholar
  96. [96].
    Shekaari H, Mousavi SS, Mansoori Y (2009) Thermophysical Properties of Ionic Liquid, 1-Pentyl-3-methylimidazolium Chloride in Water at Different Temperatures. International Journal of Thermophysics 30 (2):499-514.CrossRefGoogle Scholar
  97. [97].
    Rilo E, Dominguez-Perez M, Vila J, Segade L, Garcia M, Varela LM, Cabeza O (2012) Easy prediction of the refractive index for binary mixtures of ionic liquids with water or ethanol. Journal of Chemical Thermodynamics 47:219-222.CrossRefGoogle Scholar
  98. [98].
    Kurnia KA, Taib MM, Mutalib MIA, Murugesan T (2011) Densities, refractive indices and excess molar volumes for binary mixtures of protic ionic liquids with methanol at T = 293.15 to 313.15 K. Journal of Molecular Liquids 159 (3):211-219.CrossRefGoogle Scholar
  99. [99].
    Soriano AN, Doma BT, Li MH (2009) Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. Journal of Chemical Thermodynamics 41 (3):301-307.CrossRefGoogle Scholar
  100. [100].
    Soriano AN, Doma BT, Li MH (2010) Density and refractive index measurements of 1-ethyl-3-methylimidazolium-based ionic liquids. Journal of the Taiwan Institute of Chemical Engineers 41 (1):115-121.CrossRefGoogle Scholar
  101. [101].
    Cota I, Gonzalez-Olmos R, Iglesias M, Medina F (2007) New short aliphatic chain ionic liquids: Synthesis, physical properties, and catalytic activity in aldol condensations. Journal of Physical Chemistry B 111 (43):12468-12477.CrossRefGoogle Scholar
  102. [102].
    Vercher E, Llopis FJ, Gonzalez-Alfaro V, Martinez-Andreu A (2010) Refractive Indices and Deviations in Refractive Indices for Binary Mixtures of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate with Methanol, Ethanol, I-Propanol, and 2-Propanol at Several Temperatures. Journal of Chemical and Engineering Data 55 (3):1430-1433.CrossRefGoogle Scholar
  103. [103].
    Brocos P, Pineiro A, Bravo R, Amigo A (2003) Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Physical Chemistry Chemical Physics 5 (3):550-557.CrossRefGoogle Scholar
  104. [104].
    Iglesias-Otero MA, Troncoso J, Carballo E, Romani L (2008) Density and refractive index in mixtures of ionic liquids and organic solvents: Correlations and predictions. Journal of Chemical Thermodynamics 40 (6):949-956.CrossRefGoogle Scholar
  105. [105].
    Reis JCR, Lampreia IMS, Santos AFS, Moita M, Douheret G (2010) Refractive Index of Liquid Mixtures: Theory and Experiment. Chemphyschem 11 (17):3722-3733.CrossRefGoogle Scholar
  106. [106].
    Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Industrial and Engineering Chemistry 40 (2):345-348.CrossRefGoogle Scholar
  107. [107].
    Gonzalez EJ, Gonzalez B, Calvar N, Dominguez A (2007) Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. Journal of Chemical and Engineering Data 52 (5):1641-1648.CrossRefGoogle Scholar
  108. [108].
    Arce A, Rodil E, Soto A (2006) Physical and excess properties for binary mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate, Omim BF4 , ionic liquid with different alcohols. J Solution Chem 35 (1):63-78.CrossRefGoogle Scholar
  109. [109].
    McNaught AD, A W (1997) IUPAC Compendium of Chemical Terminology. Blackwell Science.Google Scholar
  110. [110].
    Z L, B C, Z D (2005) Special distillation processes. Elsevier, Amsterdam.Google Scholar
  111. [111].
    Pitzer KS (1973) Thermodynamics of electrolytes. 1. Theoretical basis and general equations. Journal of Physical Chemistry 77 (2):268-277.CrossRefGoogle Scholar
  112. [112].
    KS P (1991) Ion interaction approach: Theory and data correlation. In Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton.Google Scholar
  113. [113].
    Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? Journal of the American Chemical Society 126 (16):5300-5308.CrossRefGoogle Scholar
  114. [114].
    Shi W, Maginn EJ (2008) Molecular Simulation and Regular Solution Theory Modeling of Pure and Mixed Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)amide ( hmim Tf2N ). Journal of Physical Chemistry B 112 (51):16710-16720.CrossRefGoogle Scholar
  115. [115].
    Shi W, Maginn EJ (2008) Atomistic Simulation of the Absorption of Carbon Dioxide and Water in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]. The Journal of Physical Chemistry B 112 (7):2045-2055.CrossRefGoogle Scholar
  116. [116].
    Aki S, Mellein BR, Saurer EM, Brennecke JF (2004) High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. Journal of Physical Chemistry B 108 (52):20355-20365.CrossRefGoogle Scholar
  117. [117].
    Shiflett MB, Yokozeki A (2007) Solubility of CO2 in room temperature ionic liquid hmim Tf2N. Journal of Physical Chemistry B 111 (8):2070-2074.CrossRefGoogle Scholar
  118. [118].
    Zhang YQ, Zhang SJ, Lu XM, Zhou Q, Fan W, Zhang XP (2009) Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture. Chemistry-a European Journal 15 (12):3003-3011.CrossRefGoogle Scholar
  119. [119].
    Zhang JM, Zhang SJ, Dong K, Zhang YQ, Shen YQ, Lv XM (2006) Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chemistry-a European Journal 12 (15):4021-4026.CrossRefGoogle Scholar
  120. [120].
    Condemarin R, Scovazzo P (2009) Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chemical Engineering Journal 147 (1):51-57.CrossRefGoogle Scholar
  121. [121].
    Ferguson L, Scovazzo P (2007) Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: Data and correlations. Industrial & Engineering Chemistry Research 46 (4):1369-1374.CrossRefGoogle Scholar
  122. [122].
    Anderson JL, Dixon JK, Brennecke JF (2007) Solubility of CO2,CH4, C2H6, C2H4, O-2, and N-2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: Comparison to other ionic liquids. Accounts of Chemical Research 40 (11):1208-1216.CrossRefGoogle Scholar
  123. [123].
    Jork C, Kristen C, Pieraccini D, Stark A, Chiappe C, Beste YA, Arlt W (2005) Tailor-made ionic liquids. Journal of Chemical Thermodynamics 37 (6):537-558.CrossRefGoogle Scholar
  124. [124].
    Lei ZG, Arlt W, Wasserscheid P (2006) Separation of 1-hexene and n-hexane with ionic liquids. Fluid Phase Equilibria 241 (1-2):290-299.CrossRefGoogle Scholar
  125. [125].
    Doker M, Gmehling J (2005) Measurement and prediction of vapor-liquid equilibria of ternary systems containing ionic liquids. Fluid Phase Equilibria 227 (2):255-266.CrossRefGoogle Scholar
  126. [126].
    Zhao J, Jiang XC, Li CX, Wang ZH (2006) Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. Fluid Phase Equilibria 247 (1-2):190-198.CrossRefGoogle Scholar
  127. [127].
    Jiang XC, Wang JF, Li CX, Wang LM, Wang ZH (2007) Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate. Journal of Chemical Thermodynamics 39 (6):841-846.CrossRefGoogle Scholar
  128. [128].
    Wang JF, Li CX, Wang ZH, Li ZJ, Jiang YB (2007) Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate. Fluid Phase Equilibria 255 (2):186-192.CrossRefGoogle Scholar
  129. [129].
    Orchilles AV, Miguel PJ, Vercher E, Martinez-Andreu A (2008) Isobaric Vapor-Liquid Equilibria for 1-Propanol plus Water plus 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate at 100 kPa. Journal of Chemical and Engineering Data 53 (10):2426-2431.CrossRefGoogle Scholar
  130. [130].
    Domanska U, Paduszynski K (2008) Phase equilibria study in binary systems (tetra-n-butylphosphonium tosylate ionic liquid + 1-alcohol, or benzene, or n-alkylbenzene). Journal of Physical Chemistry B 112 (35):11054-11059.CrossRefGoogle Scholar
  131. [131].
    Domanska U, Krolikowski M, Paduszynski K (2009) Phase equilibria study of the binary systems (N-butyl-3-methylpyridinium tosylate ionic liquid plus an alcohol). Journal of Chemical Thermodynamics 41 (8):932-938.CrossRefGoogle Scholar
  132. [132].
    Domanska U, Krolikowska M, Paduszynski K (2011) Physico-chemical properties and phase behaviour of piperidinium-based ionic liquids. Fluid Phase Equilibria 303 (1):1-9.CrossRefGoogle Scholar
  133. [133].
    Wang TF, Peng CJ, Liu HL, Hu Y, Jiang JW (2007) Equation of state for the vapor-liquid equilibria of binary systems containing imidazolium-based ionic liquids. Industrial & Engineering Chemistry Research 46 (12):4323-4329.CrossRefGoogle Scholar
  134. [134].
    Xu XC, Peng CJ, Liu HL, Hu Y (2009) Modeling pVT Properties and Phase Equilibria for Systems Containing Ionic Liquids Using a New Lattice-Fluid Equation of State. Industrial & Engineering Chemistry Research 48 (24):11189-11201.CrossRefGoogle Scholar
  135. [135].
    Xu XC, Peng CJ, Liu HL, Hu Y (2011) A lattice-fluid model for multi-component ionic-liquid systems. Fluid Phase Equilibria 302 (1-2):260-268.CrossRefGoogle Scholar
  136. [136].
    Tsioptsias C, Tsivintzelis I, Panayiotou C (2010) Equation-of-state modeling of mixtures with ionic liquids. Physical Chemistry Chemical Physics 12 (18):4843-4851.CrossRefGoogle Scholar
  137. [137].
    Paduszynski K, Chiyen J, Ramjugernath D, Letcher TM, Domanska U (2011) Liquid-liquid phase equilibrium of (piperidinium-based ionic liquid plus an alcohol) binary systems and modelling with NRHB and PCP-SAFT. Fluid Phase Equilibria 305 (1):43-52.CrossRefGoogle Scholar
  138. [138].
    Paduszynski K, Domanska U (2011) Solubility of Aliphatic Hydrocarbons in Piperidinium Ionic Liquids: Measurements and Modeling in Terms of Perturbed-Chain Statistical Associating Fluid Theory and Nonrandom Hydrogen-Bonding Theory. Journal of Physical Chemistry B 115 (43):12537-12548.CrossRefGoogle Scholar
  139. [139].
    Xu X, Liu H, Peng C, Hu Y (2008) A new molecular-thermodynamic model based on lattice fluid theory: Application to pure fluids and their mixtures. Fluid Phase Equilibria 265 (1-2):112-121.CrossRefGoogle Scholar
  140. [140].
    Lei ZG, Chen BH, Li CY (2007) COSMO-RS modeling on the extraction of stimulant drugs from urine sample by the double actions of supercritical carbon dioxide and ionic liquid. Chemical Engineering Science 62 (15):3940-3950.CrossRefGoogle Scholar
  141. [141].
    Diedenhofen M, Eckert F, Klamt A (2003) Prediction of infinite dilution activity coefficients of organic compounds in ionic liquids using COSMO-RS. Journal of Chemical and Engineering Data 48 (3):475-479.CrossRefGoogle Scholar
  142. [142].
    Kato R, Gmehling J (2005) Systems with ionic liquids: Measurement of VLE and gamma(infinity) data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(O1). Journal of Chemical Thermodynamics 37 (6):603-619.CrossRefGoogle Scholar
  143. [143].
    Eike DM, Brennecke JF, Maginn EJ (2004) Predicting infinite-dilution activity coefficients of organic solutes in ionic liquids. Industrial & Engineering Chemistry Research 43 (4):1039-1048.CrossRefGoogle Scholar
  144. [144].
    Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL (2008) Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Industrial & Engineering Chemistry Research 47 (18):7005-7012.CrossRefGoogle Scholar
  145. [145].
    Camper D, Becker C, Koval C, Noble R (2005) Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory. Industrial & Engineering Chemistry Research 44 (6):1928-1933.CrossRefGoogle Scholar
  146. [146].
    Finotello A, Bara JE, Camper D, Noble RD (2008) Room-temperature ionic liquids: Temperature dependence of gas solubility selectivity. Industrial & Engineering Chemistry Research 47 (10):3453-3459.CrossRefGoogle Scholar
  147. [147].
    Kilaru PK, Condemarin PA, Scovazzo P (2008) Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic Liquids. Part 1. Using surface tension. Industrial & Engineering Chemistry Research 47 (3):900-909.CrossRefGoogle Scholar
  148. [148].
    Kilaru PK, Scovazzo P (2008) Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperatuire ionic liquids. Part 2. using activation energy of viscosity. Industrial & Engineering Chemistry Research 47 (3):910-919.CrossRefGoogle Scholar
  149. [149].
    Skjoldjorgensen S, Kolbe B, Gmehling J, Rasmussen P (1979) Vapor-liquid equilibria by UNIFAC group contribution. Industrial & Engineering Chemistry Process Design and Development 18 (4):714-722.CrossRefGoogle Scholar
  150. [150].
    Gmehling J, Rasmussen P, Fredenslund A (1982) Vapor-liquid equilibria by UNIFAC group contribution. 2. Revision and extension. Industrial & Engineering Chemistry Process Design and Development 21 (1):118-127.CrossRefGoogle Scholar
  151. [151].
    Macedo EA, Weidlich U, Gmehling J, Rasmussen P (1983) Vapor-liquid equilibria by UNIFAC group contribution. 3. Revision and extension. Industrial & Engineering Chemistry Process Design and Development 22 (4):676-678.CrossRefGoogle Scholar
  152. [152].
    Tiegs D, Gmehling J, Rasmussen P, Fredenslund A (1987) Vapor-liquid equilibria by UNIFAC group contribution. 4. Revision and extension. Industrial & Engineering Chemistry Research 26 (1):159-161.CrossRefGoogle Scholar
  153. [153].
    Hansen HK, Rasmussen P, Fredenslund A, Schiller M, Gmehling J (1991) Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extension. Industrial & Engineering Chemistry Research 30 (10):2352-2355.CrossRefGoogle Scholar
  154. [154].
    Wittig R, Lohmann J, Gmehling J (2003) Vapor-liquid equilibria by UNIFAC group contribution. 6. Revision and extension. Industrial & Engineering Chemistry Research 42 (1):183-188.CrossRefGoogle Scholar
  155. [155].
    Yang L, Sandler SI, Peng CJ, Liu HL, Hu Y (2010) Prediction of the Phase Behavior of Ionic Liquid Solutions. Industrial & Engineering Chemistry Research 49 (24):12596-12604.CrossRefGoogle Scholar
  156. [156].
    Kojima K, Zhang SJ, Hiaki T (1997) Measuring methods of infinite dilution activity coefficients and a database for systems including water. Fluid Phase Equilibria 131 (1-2):145-179.CrossRefGoogle Scholar
  157. [157].
    Sandler SI (1996) Infinite dilution activity coefficients in chemical, environmental and biochemical engineering. Fluid Phase Equilibria 116 (1-2):343-353.CrossRefGoogle Scholar
  158. [158].
    Eckert CA, Sherman SR (1996) Measurement and prediction of limiting activity coefficients. Fluid Phase Equilibria 116 (1-2):333-342.CrossRefGoogle Scholar
  159. [159].
    Krummen M, Wasserscheid P, Gmehling J (2002) Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. Journal of Chemical and Engineering Data 47 (6):1411-1417.CrossRefGoogle Scholar
  160. [160].
    Heintz A, Kulikov DV, Verevkin SP (2001) Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas-liquid chromatography. Journal of Chemical and Engineering Data 46 (6):1526-1529.CrossRefGoogle Scholar
  161. [161].
    Wang LS, Wang XX, Li Y, Jiang K, Shao XZ, Du CJ (2013) Ionic liquids: Solubility parameters and selectivities for organic solutes. Aiche Journal 59 (8):3034-3041.CrossRefGoogle Scholar
  162. [162].
    Everett DH (1965) Effect of gas imperfection on G.L.C. measurements : a refined method for determining activity coefficients and second virial coefficients. Transactions of the Faraday Society 61 (0):1637-1645.CrossRefGoogle Scholar
  163. [163].
    Cruickshank AJB, Windsor ML, Young CL (1966) The Use of Gas-Liquid Chromatography to Determine Activity Coefficients and Second Virial Coefficients of Mixtures. I. Theory and Verification of Method of Data Analysis. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 295 (1442):259-270.Google Scholar
  164. [164].
    DW G (1971) Gas-Liquid Chromatography. Van Nostrand Reinhold, London, U.K.Google Scholar
  165. [165].
    Xue ZM, Mu TC, Gmehling J (2012) Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium. Industrial & Engineering Chemistry Research 51 (36):11809-11817.CrossRefGoogle Scholar
  166. [166].
    Weidlich U, Gmehling J (1987) A Modified UNIFAC Model. 1. Prediction of VLE, hE, and γ∞. Industrial & Engineering Chemistry Research 26 (7):1372-1381.CrossRefGoogle Scholar
  167. [167].
    Gmehling J, Li JD, Schiller M (1993) A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Industrial & Engineering Chemistry Research 32 (1):178-193.CrossRefGoogle Scholar
  168. [168].
    Gmehling J, Lohmann J, Jakob A, Li JD, Joh R (1998) A modified UNIFAC (Dortmund) model. 3. Revision and extension. Industrial & Engineering Chemistry Research 37 (12):4876-4882.CrossRefGoogle Scholar
  169. [169].
    Gmehling J, Wittig R, Lohmann J, Joh R (2002) A modified UNIFAC (Dortmund) model. 4. Revision and extension. Industrial & Engineering Chemistry Research 41 (6):1678-1688.CrossRefGoogle Scholar
  170. [170].
    Jakob A, Grensemann H, Lohmann J, Gmehling J (2006) Further development of modified UNIFAC (Dortmund): Revision and extension 5. Industrial & Engineering Chemistry Research 45 (23):7924-7933.CrossRefGoogle Scholar
  171. [171].
    Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) Refinement and parametrization of COSMO-RS. Journal of Physical Chemistry A 102 (26):5074-5085.CrossRefGoogle Scholar
  172. [172].
    Klamt A, Eckert F (2000) COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilibria 172 (1):43-72.CrossRefGoogle Scholar
  173. [173].
    Klamt A (1995) Conductor-like screening model for real solvents a new approach to the quantitative calculation of solvation phenomena. Journal of Physical Chemistry 99 (7):2224-2235.CrossRefGoogle Scholar
  174. [174].
    Gutierrez JP, Meindersma GW, de Haan AB (2012) COSMO-RS-Based Ionic-Liquid Selection for Extractive Distillation Processes. Industrial & Engineering Chemistry Research 51 (35):11518-11529.CrossRefGoogle Scholar
  175. [175].
    Anantharaj R, Banerjee T (2011) COSMO-RS based predictions for the desulphurization of diesel oil using ionic liquids: Effect of cation and anion combination. Fuel Processing Technology 92 (1):39-52.CrossRefGoogle Scholar
  176. [176].
    Diedenhofen M, Klamt A (2010) COSMO-RS as a tool for property prediction of IL mixtures-A review. Fluid Phase Equilibria 294 (1-2):31-38.CrossRefGoogle Scholar
  177. [177].
    D T, J G, A M, M S, J B, P A, I K (1986) DECHEMA Chemistry Data. vol Series IX. DECHEMA, Frankfurt/Main.Google Scholar
  178. [178].
    Foco GM, Bottini SB, Quezada N, de la Fuente JC, Peters CJ (2006) Activity coefficients at infinite dilution in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Journal of Chemical and Engineering Data 51 (3):1088-1091.CrossRefGoogle Scholar
  179. [179].
    Kikic I, Alessi P, Rasmussen P, Fredenslund A (1980) On the combinatorial part of the UNIFAC and UNIQUAC models. Canadian Journal of Chemical Engineering 58 (2):253-258.CrossRefGoogle Scholar
  180. [180].
    CL Y (1999) Chemical properties handbook. McGraw-Hill Book Co., New York.Google Scholar
  181. [181].
    A B (1968) Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York.Google Scholar
  182. [182].
    de los Rios AP, Fernandez FJH, Gomez D, Rubio M, Villora G (2012) (Liquid plus Liquid) Equilibrium for Ternary Systems Containing of an Ionic Liquid, n-Hexane and an Organic Compound Involved in the Kinetic Resolution of rac-2-Pentanol. Separation Science and Technology 47 (2):300-311.CrossRefGoogle Scholar
  183. [183].
    Renon H, Prausnit.Jm (1968) Local compositions in thermodynamic excess functions for liquid mixtures. Aiche Journal 14 (1):135-144.CrossRefGoogle Scholar
  184. [184].
    Abrams DS, Prausnitz JM (1975) Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. Aiche Journal 21 (1):116-128.CrossRefGoogle Scholar
  185. [185].
    De Sousa HC, Rebelo LPN (2000) A continuous polydisperse thermodynamic algorithm for a modified Flory-Huggins model: The (polystyrene plus nitroethane) example. Journal of Polymer Science Part B-Polymer Physics 38 (4):632-651.CrossRefGoogle Scholar
  186. [186].
    Rebelo LPN, Najdanovic-Visak V, Visak ZP, da Ponte MN, Szydlowski J, Cerdeirina CA, Troncoso J, Romani L, Esperanca J, Guedes HJR, de Sousa HC (2004) A detailed thermodynamic analysis of C(4)mim BF4 plus water as a case study to model ionic liquid aqueous solutions. Green Chemistry 6 (8):369-381.CrossRefGoogle Scholar
  187. [187].
    Y. Q, J.M. P (2005) Solubilities of solutes in ionic liquids from a simple Perturbed-Hard-Sphere Theory. Zeitschrift für Physikalische Chemie 219:1223-1241.CrossRefGoogle Scholar
  188. [188].
    Yang JY, Peng CJ, Liu HL, Hu Y (2006) Calculation of vapor-liquid and liquid-liquid phase equilibria for systems containing ionic liquids using a lattice model. Industrial & Engineering Chemistry Research 45 (20):6811-6817.CrossRefGoogle Scholar
  189. [189].
    Arce A, Earle MJ, Katdare SP, Rodriguez H, Seddon KR (2008) Application of mutually immiscible ionic liquids to the separation of aromatic and aliphatic hydrocarbons by liquid extraction: a preliminary approach. Physical Chemistry Chemical Physics 10 (18):2538-2542.CrossRefGoogle Scholar
  190. [190].
    Arce A, Earle MJ, Rodriguez H, Seddon KR (2007) Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids: Effect of the alkyl-substituent length. Journal of Physical Chemistry B 111 (18):4732-4736.CrossRefGoogle Scholar
  191. [191].
    Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2012) Overview of the Liquid-Liquid Equilibria of Ternary Systems Composed of Ionic Liquid and Aromatic and Aliphatic Hydrocarbons, and Their Modeling by COSMO-RS. Industrial & Engineering Chemistry Research 51 (8):3483-3507.CrossRefGoogle Scholar
  192. [192].
    Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Coutinho JAP (2011) An Overview of the Liquid-Liquid Equilibria of (Ionic Liquid plus Hydrocarbon) Binary Systems and Their Modeling by the Conductor-like Screening Model for Real Solvents. Industrial & Engineering Chemistry Research 50 (9):5279-5294.CrossRefGoogle Scholar
  193. [193].
    Domanska U, Pobudkowska A, Eckert F (2006) Liquid-liquid equilibria in the binary systems (1,3-dimethylimidazolium, or 1-butyl-3-methylimidazolium methylsulfate plus hydrocarbons). Green Chemistry 8 (3):268-276.CrossRefGoogle Scholar
  194. [194].
    A K (2005) Summary, limitations, and perspectives In COSMO-RS. Elsevier, Amsterdam, The Netherlands.Google Scholar
  195. [195].
    JY Y, QL Y, HL L, Y H (2006) A molecular thermodynamic model for compressible lattice polymers. Polymer 47 (14):5187-5195.CrossRefGoogle Scholar
  196. [196].
    Yang JY, Peng CJ, Liu HL, Hu Y, Jiang JW (2006) A generic molecular thermodynamic model for linear and branched polymer solutions in a lattice. Fluid Phase Equilibria 244 (2):188-192.CrossRefGoogle Scholar
  197. [197].
    K K, K T (1979) Prediction of Vapor–Liquid Equilibria by the ASOG Method. Elsevier, Tokyo.Google Scholar
  198. [198].
    Tochigi K, Tiegs D, Gmehling J, Kojima K (1990) Determination of new ASOG parameters. Journal of Chemical Engineering of Japan 23 (4):453-463.CrossRefGoogle Scholar
  199. [199].
    Tochigi K, Yoshida K, Kurihara K, Ochi K, Murata J, Yasumoto M, Sako T (2001) Prediction of vapor-liquid equilibrium for systems containing hydrofluoroethers using ASOG group contribution method. Fluid Phase Equilibria 183:173-182.CrossRefGoogle Scholar
  200. [200].
    Tochigi K, Yoshida K, Kurihara K, Ochi K, Murata J, Urata S, Otake K (2002) Determination of ASOG parameters for selecting azeotropic mixtures containing hydrofluoroethers. Fluid Phase Equilibria 194:653-662.CrossRefGoogle Scholar
  201. [201].
    Banerjee T, Verma KK, Khanna A (2008) Liquid-liquid equilibrium for ionic liquid systems using COSMO-RS: Effect of cation and anion dissociation. Aiche Journal 54 (7):1874-1885.CrossRefGoogle Scholar
  202. [202].
    Robles PA, Graber TA, Aznar M (2009) Prediction by the ASOG method of liquid-liquid equilibrium for binary and ternary systems containing 1-alkyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibria 287 (1):43-49.CrossRefGoogle Scholar
  203. [203].
    Verma NR, Gopal G, Anantharaj R, Banerjee T (2012) (Solid plus liquid) equilibria predictions of ionic liquid containing systems using COSMO-RS. Journal of Chemical Thermodynamics 48:246-253.CrossRefGoogle Scholar
  204. [204].
    Domanska U (1987) Solid-liquid phase relations of some normal long-chain fatty acids in selected organic one- and two-component solvents. Industrial & Engineering Chemistry Research 26 (6):1153-1162.CrossRefGoogle Scholar
  205. [205].
    JM P, RN L, EG dA (1999) Molecular thermodynamics of fluid-phase equilibria. 3rd ed. edn. Prentice Hall, NJ.Google Scholar
  206. [206].
    Wilson GM (1964) Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society 86 (2):127-130.Google Scholar
  207. [207].
    Domanska U, Zolek-Tryznowska Z, Krolikowski M (2007) Thermodynamic phase behavior of ionic liquids. Journal of Chemical and Engineering Data 52 (5):1872-1880.CrossRefGoogle Scholar
  208. [208].
    Domanska U, Bogel-Lukasik E (2004) Solid-liquid equilibria for systems containing 1-butyl-3-methylimidazolium chloride. Fluid Phase Equilibria 218 (1):123-129.CrossRefGoogle Scholar
  209. [209].
    Domanska U, Bogel-Lukasik E, Bogel-Lukasik R (2003) Solubility of 1-dodecyl-3-methylimidazolium chloride in alcohols (C-2-C-12). Journal of Physical Chemistry B 107 (8):1858-1863.CrossRefGoogle Scholar
  210. [210].
    Domanska U, Bogel-Lukasik E, Bogel-Lukasik R (2003) 1-octanol/water partition coefficients of 1-alkyl-3-methylimidazolium chloride. Chemistry-a European Journal 9 (13):3033-3041.CrossRefGoogle Scholar
  211. [211].
    Domanska U, Bogel-Lukasik E (2003) Measurements and correlation of the (solid plus liquid) equilibria of 1-decyl-3-methylimidazolium chloride plus Alcohols (C-2-C-12). Industrial & Engineering Chemistry Research 42 (26):6986-6992.CrossRefGoogle Scholar
  212. [212].
    Domanska U (2005) Solubilities and thermophysical properties of ionic liquids. Pure and Applied Chemistry 77 (3):543-557.CrossRefGoogle Scholar
  213. [213].
    Domanska U, Mazurowska L (2004) Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility. Fluid Phase Equilibria 221 (1-2):73-82.CrossRefGoogle Scholar
  214. [214].
    Eckert F, Klamt A (2002) Fast solvent screening via quantum chemistry: COSMO-RS approach. Aiche Journal 48 (2):369-385.CrossRefGoogle Scholar
  215. [215].
    Lin ST, Sandler SI (2002) A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & Engineering Chemistry Research 41 (5):899-913.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Suojiang Zhang
    • 1
    • 2
  • Qing Zhou
    • 3
    • 4
  • Xingmei Lu
    • 5
    • 6
  • Yuting Song
    • 7
  • Xinxin Wang
    • 8
  1. 1.Beijing Key Laboratory of Ionic LiquidsClean Process, Institute of Process, Engineering, Chinese Academy of SciencesBeijingChina
  2. 2.College of Chemistry and ChemicalEngineering, University of Chinese, Academy of SciencesBeijingChina
  3. 3.Beijing Key Laboratory of Ionic LiquidsClean Process, Institute of Process, Engineering, Chinese Academy of SciencesBeijingChina
  4. 4.College of Chemistry and ChemicalEngineering, University of Chinese, Academy of SciencesBeijingChina
  5. 5.Beijing Key Laboratory of Ionic LiquidsClean Process, Institute of Process, Engineering, Chinese Academy of SciencesBeijingChina
  6. 6.College of Chemistry and ChemicalEngineering, University of Chinese, Academy of SciencesBeijingChina
  7. 7.Beijing Key Laboratory of Ionic LiquidsClean Process, Institute of Process, Engineering, Chinese Academy of SciencesBeijingChina
  8. 8.Beijing Key Laboratory of Ionic LiquidsClean Process, Institute of Process, Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations