Skip to main content

Polymer Physics

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 241))

Abstract

This chapter is focused on the brief review of general aspects of polymer science and some important molecular theories related with polymer rheology. This chapter must be necessary for the readers who have weak basis of polymer science, while it can be omitted by polymer scientists and engineers. The first three sections describe polymer structure and the basics of polymer identification. The last section addresses molecular and phenomenological theory of rubber elasticity. The last section demands the knowledge of Chaps. 2 and 3. Further study is available in Strobl (The Physics of Polymers, 2nd edn. Springer, Berlin, 1997), Ward and Sweeney (An Introduction to Mechanical Properties of Solid Polymers, 2nd edn. Wiley, New York, 2004), Sperling (Introduction to Physical Polymer Science, 4th edn. Wiley Interscience, New York, 2006), and Rubinstein and Colby (Polymer Physics, Oxford University Press, Oxford, 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  CAS  Google Scholar 

  • G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  • R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids Vol. 2. Kinetic Theory (Wiley, New York, 1987)

    Google Scholar 

  • P.J. Blatz, S.C. Sharda, N.W. Tschoegl, Strain energy function for rubberlike materials based on a generalized measure of strain. Trans. Soc. Rheol. 18, 145–161 (1974)

    Article  CAS  Google Scholar 

  • T.S. Chow, Mesoscopic Physics of Complex Materials (Springer, Berlin, 2000)

    Google Scholar 

  • M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

    Google Scholar 

  • L.M. Dossin, W.W. Graessley, Rubber elasticity of well-characterized polybutadiene networks. Macromolecules 12, 123–130 (1979)

    Article  CAS  Google Scholar 

  • E.-J. Donth, Relaxation and Thermodynamics in Polymers (Akademie Verlag, Berlin, 1992)

    Google Scholar 

  • L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27, 4639–4647 (1994)

    Article  CAS  Google Scholar 

  • U.W. Gedde, Polymer Physics (Kluwer Academic Publishers, Berlin, 2001)

    Google Scholar 

  • Y. Heo, R.G. Larson, Universal scaling of linear and nonlinear rheological properties of semidilute and concentrated polymer solutions. Macromolecules 41, 8903–8915 (2008)

    Article  CAS  Google Scholar 

  • D.-J Kim, Study on rheological behavior of ABS and SAN under large amplitude oscillatory shear flow,” MS thesis supervised by Prof. K. S. Cho, Kyungpook National University, 2007

    Google Scholar 

  • M. Mooney, A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  • R.W. Ogden, Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Roy. Soc. Lond. A. 326, 565–584 (1972)

    Article  CAS  Google Scholar 

  • R.W. Ogden, Non-linear Elastic Deformations (Dover, Mineola, 1984)

    Google Scholar 

  • R.W. Ogden, Recent advances in the phenomenological theory of rubber elasticity. Rubber Chem. Tech. 59, 361–383 (1986)

    Article  CAS  Google Scholar 

  • R.S. Rivlin, Large elastic deformations of isotropic materials. I. Fundamental concepts. Phil. Trans. Roy. Soc. Lond. A 240, 459–490 (1948)

    Article  Google Scholar 

  • R.S. Rivlin, K.N. Sawyer, The strain-energy function for elastomers. Trans. Soc. Rheol. 20, 545–557 (1976)

    Article  CAS  Google Scholar 

  • M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)

    Google Scholar 

  • R.J. Silbey, R.A. Alberty, M.G. Bawendi, Physical Chemistry, 4th edn. (Wiley, New York, 2005)

    Google Scholar 

  • L.H. Sperling, Introduction to Physical Polymer Science, 4th edn. (Wiley Interscience, New York, 2006)

    Google Scholar 

  • G. Strobl, The Physics of Polymers, 2nd edn. (Springer, Berlin, 1997)

    Google Scholar 

  • I. Teraoka, Polymer Solutions (Wiley-Interscience, New York, 2002)

    Google Scholar 

  • L.T.G. Treloar, Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)

    Article  CAS  Google Scholar 

  • L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd edn. (Clarendon Press, Oxford, 1975)

    Google Scholar 

  • K.C. Valanis, R.F. Landel, The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002 (1967)

    Article  CAS  Google Scholar 

  • H. Yamakawa, Modern Theory of Polymer Solutions (Harper and Row, New York, 1971)

    Google Scholar 

  • I.M. Ward, J. Sweeney, An Introduction to Mechanical Properties of Solid Polymers, 2nd edn. (Wiley, New York, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Cho .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cho, K.S. (2016). Polymer Physics. In: Viscoelasticity of Polymers. Springer Series in Materials Science, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7564-9_4

Download citation

Publish with us

Policies and ethics