Skip to main content

Oncolytic Immunotherapy for Treatment of Cancer

  • Chapter
  • First Online:
Progress in Cancer Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 909))

Abstract

Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain, T., Lun, X., Martineau, Y., Sean, P., Pulendran, B., Petroulakis, E., Zemp, F. J., Lemay, C. G., Roy, D., Bell, J. C., Thomas, G., Kozma, S. C., Forsyth, P. A., Costa-Mattioli, M., & Sonenberg, N. (2010). Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1576–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Breckenridge, C., Kaur, B., & Chiocca, E. A. (2009). Pharmacologic and chemical adjuvants in tumor virotherapy. Chemical Reviews, 109(7), 3125–3140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Breckenridge, C. A., Yu, J., Caligiuri, M. A., & Chiocca, E. A. (2013). Uncovering a novel mechanism whereby NK cells interfere with glioblastoma virotherapy. Oncoimmunology, 2(4), e23658.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andtbacka, R. H., Kaufman, H. L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., Delman, K. A., Spitler, L. E., Puzanov, I., Agarwala, S. S., Milhem, M., Cranmer, L., Curti, B., Lewis, K., Ross, M., Guthrie, T., Linette, G. P., Daniels, G. A., Harrington, K., Middleton, M. R., Miller, W. H., Jr., Zager, J. S., Ye, Y., Yao, B., Li, A., Doleman, S., VanderWalde, A., Gansert, J., & Coffin, R. (2015). Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. Journal of Clinical Oncology, 33(25), 2780–2788.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, L., Arrington, A., Han, J., Gavrikova, T., Brown, E., Yamamoto, M., Vickers, S. M., & Davydova, J. (2012). Generation of a novel, cyclooxygenase-2-targeted, interferon-expressing, conditionally replicative adenovirus for pancreatic cancer therapy. American Journal of Surgery, 204(5), 741–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada, T. (1974). Treatment of human cancer with mumps virus. Cancer, 34(6), 1907–1928.

    Article  CAS  PubMed  Google Scholar 

  • Bai, F., Niu, Z., Tian, H., Li, S., Lv, Z., Zhang, T., Ren, G., & Li, D. (2014). Genetically engineered Newcastle disease virus expressing interleukin 2 is a potential drug candidate for cancer immunotherapy. Immunology Letters, 159(1–2), 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Barker, D. D., & Berk, A. J. (1987). Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology, 156(1), 107–121.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, D. L., Liu, Z., Sathaiah, M., Ravindranathan, R., Guo, Z., He, Y., & Guo, Z. S. (2013). Oncolytic viruses as therapeutic cancer vaccines. Molecular Cancer, 12(1), 103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauzon, M., & Hermiston, T. W. (2012). Oncolytic viruses: The power of directed evolution. Advances in Virology, 2012, 586389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergman, I., Griffin, J. A., Gao, Y., & Whitaker-Dowling, P. (2007). Treatment of implanted mammary tumors with recombinant vesicular stomatitis virus targeted to Her2/neu. International Journal of Cancer Journal International du Cancer, 121(2), 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Bernt, K. M., Ni, S., Tieu, A. T., & Lieber, A. (2005). Assessment of a combined, adenovirus-mediated oncolytic and immunostimulatory tumor therapy. Cancer Research, 65(10), 4343–4352.

    Article  CAS  PubMed  Google Scholar 

  • Beug, S. T., Tang, V. A., LaCasse, E. C., Cheung, H. H., Beauregard, C. E., Brun, J., Nuyens, J. P., Earl, N., St-Jean, M., Holbrook, J., Dastidar, H., Mahoney, D. J., Ilkow, C., Le Boeuf, F., Bell, J. C., & Korneluk, R. G. (2014). Smac mimetics and innate immune stimuli synergize to promote tumor death. Nature Biotechnology, 32(2), 182–190.

    Article  CAS  PubMed  Google Scholar 

  • Beyer, M., Kochanek, M., Darabi, K., Popov, A., Jensen, M., Endl, E., Knolle, P. A., Thomas, R. K., von Bergwelt-Baildon, M., Debey, S., Hallek, M., & Schultze, J. L. (2005). Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood, 106(6), 2018–2025.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, M. E. (2007). DAMPs, PAMPs and alarmins: All we need to know about danger. Journal of Leukocyte Biology, 81(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Bierman, H. R., Crile, D. M., Dod, K. S., Kelly, K. H., Petrakis, N. L., White, L. P., & Shimkin, M. B. (1953). Remissions in leukemia of childhood following acute infectious disease: Staphylococcus and streptococcus, varicella, and feline panleukopenia. Cancer, 6(3), 591–605.

    Article  CAS  PubMed  Google Scholar 

  • Binder, C., Hagemann, T., Husen, B., Schulz, M., & Einspanier, A. (2002). Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Molecular Human Reproduction, 8(9), 789–796.

    Article  CAS  PubMed  Google Scholar 

  • Binder, D. C., Fu, Y. X., & Weichselbaum, R. R. (2015). Radiotherapy and immune checkpoint blockade: Potential interactions and future directions. Trends in Molecular Medicine, 21(8), 463–465.

    Article  PubMed  Google Scholar 

  • Bischoff, J. R., Kirn, D. H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., Nye, J. A., Sampson-Johannes, A., Fattaey, A., & McCormick, F. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 274(5286), 373–376.

    Article  CAS  PubMed  Google Scholar 

  • Blackham, A. U., Northrup, S. A., Willingham, M., D’Agostino, R. B., Jr., Lyles, D. S., & Stewart, J. H. (2013). Variation in susceptibility of human malignant melanomas to oncolytic vesicular stomatitis virus. Surgery, 153(3), 333–343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bluming, A. Z., & Ziegler, J. L. (1971). Regression of Burkitt’s lymphoma in association with measles infection. Lancet, 2(7715), 105–106.

    Article  CAS  PubMed  Google Scholar 

  • Bolyard, C., Yoo, J. Y., Wang, P. Y., Saini, U., Rath, K. S., Cripe, T. P., Zhang, J., Selvendiran, K., & Kaur, B. (2014). Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20(24), 6479–6494.

    Article  CAS  Google Scholar 

  • Breitbach, C. J., Burke, J., Jonker, D., Stephenson, J., Haas, A. R., Chow, L. Q., Nieva, J., Hwang, T. H., Moon, A., Patt, R., Pelusio, A., Le Boeuf, F., Burns, J., Evgin, L., De Silva, N., Cvancic, S., Robertson, T., Je, J. E., Lee, Y. S., Parato, K., Diallo, J. S., Fenster, A., Daneshmand, M., Bell, J. C., & Kirn, D. H. (2011). Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature, 477(7362), 99–102.

    Article  CAS  PubMed  Google Scholar 

  • Bridle, B. W., Chen, L., Lemay, C. G., Diallo, J. S., Pol, J., Nguyen, A., Capretta, A., He, R., Bramson, J. L., Bell, J. C., Lichty, B. D., & Wan, Y. (2013). HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Molecular Therapy: The Journal of the American Society of Gene Therapy, 21(4), 887–894.

    Article  CAS  Google Scholar 

  • Buckel, L., Advani, S. J., Frentzen, A., Zhang, Q., Yu, Y. A., Chen, N. G., Ehrig, K., Stritzker, J., Mundt, A. J., & Szalay, A. A. (2013). Combination of fractionated irradiation with anti-VEGF expressing vaccinia virus therapy enhances tumor control by simultaneous radiosensitization of tumor associated endothelium. International Journal of Cancer Journal International du Cancer, 133(12), 2989–2999.

    CAS  PubMed  Google Scholar 

  • Buonaguro, F. M., Tornesello, M. L., Izzo, F., & Buonaguro, L. (2012). Oncolytic virus therapies. Pharmaceutical Patent Analyst, 1(5), 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Burke, J. M., Lamm, D. L., Meng, M. V., Nemunaitis, J. J., Stephenson, J. J., Arseneau, J. C., Aimi, J., Lerner, S., Yeung, A. W., Kazarian, T., Maslyar, D. J., & McKiernan, J. M. (2012). A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. The Journal of Urology, 188(6), 2391–2397.

    Article  CAS  PubMed  Google Scholar 

  • Carew, J. F., Kooby, D. A., Halterman, M. W., Kim, S. H., Federoff, H. J., & Fong, Y. (2001). A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Molecular Therapy: The Journal of the American Society of Gene Therapy, 4(3), 250–256.

    Article  CAS  Google Scholar 

  • Cascallo, M., Alonso, M. M., Rojas, J. J., Perez-Gimenez, A., Fueyo, J., & Alemany, R. (2007). Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Molecular Therapy: The Journal of the American Society of Gene Therapy, 15(9), 1607–1615.

    Article  CAS  Google Scholar 

  • Cassel, W. A., & Garrett, R. E. (1965). Newcastle disease virus as an antineoplastic agent. Cancer, 18, 863–868.

    Article  CAS  PubMed  Google Scholar 

  • Cassel, W. A., & Garrett, R. E. (1966). Tumor immunity after viral oncolysis. Journal of Bacteriology, 92(3), 792.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassel, W. A., & Murray, D. R. (1992). A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Medical Oncology and Tumor Pharmacotherapy, 9(4), 169–171.

    CAS  PubMed  Google Scholar 

  • Cattaneo, R., Miest, T., Shashkova, E. V., & Barry, M. A. (2008). Reprogrammed viruses as cancer therapeutics: Targeted, armed and shielded. Nature Reviews Microbiology, 6(7), 529–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerullo, V., Pesonen, S., Diaconu, I., Escutenaire, S., Arstila, P. T., Ugolini, M., Nokisalmi, P., Raki, M., Laasonen, L., Sarkioja, M., Rajecki, M., Kangasniemi, L., Guse, K., Helminen, A., Ahtiainen, L., Ristimaki, A., Raisanen-Sokolowski, A., Haavisto, E., Oksanen, M., Karli, E., Karioja-Kallio, A., Holm, S. L., Kouri, M., Joensuu, T., Kanerva, A., & Hemminki, A. (2010). Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Research, 70(11), 4297–4309.

    Article  CAS  PubMed  Google Scholar 

  • Cerullo, V., Diaconu, I., Kangasniemi, L., Rajecki, M., Escutenaire, S., Koski, A., Romano, V., Rouvinen, N., Tuuminen, T., Laasonen, L., Partanen, K., Kauppinen, S., Joensuu, T., Oksanen, M., Holm, S. L., Haavisto, E., Karioja-Kallio, A., Kanerva, A., Pesonen, S., Arstila, P. T., & Hemminki, A. (2011). Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Molecular Therapy: The Journal of the American Society of Gene Therapy, 19(9), 1737–1746.

    Article  CAS  Google Scholar 

  • Chase, M., Chung, R. Y., & Chiocca, E. A. (1998). An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nature Biotechnology, 16(5), 444–448.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Yu, D. C., Charlton, D., & Henderson, D. R. (2000). Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: Implications and proposals for human therapy. Human Gene Therapy, 11(11), 1553–1567.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., DeWeese, T., Dilley, J., Zhang, Y., Li, Y., Ramesh, N., Lee, J., Pennathur-Das, R., Radzyminski, J., Wypych, J., Brignetti, D., Scott, S., Stephens, J., Karpf, D. B., Henderson, D. R., & Yu, D. C. (2001). CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Research, 61(14), 5453–5460.

    CAS  PubMed  Google Scholar 

  • Chiocca, E. A., Abbed, K. M., Tatter, S., Louis, D. N., Hochberg, F. H., Barker, F., Kracher, J., Grossman, S. A., Fisher, J. D., Carson, K., Rosenblum, M., Mikkelsen, T., Olson, J., Markert, J., Rosenfeld, S., Nabors, L. B., Brem, S., Phuphanich, S., Freeman, S., Kaplan, R., & Zwiebel, J. (2004). A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Molecular Therapy: The Journal of the American Society of Gene Therapy, 10(5), 958–966.

    Article  CAS  Google Scholar 

  • Choi, K. J., Kim, J. H., Lee, Y. S., Kim, J., Suh, B. S., Kim, H., Cho, S., Sohn, J. H., Kim, G. E., & Yun, C. O. (2006). Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Therapy, 13(13), 1010–1020.

    Article  CAS  PubMed  Google Scholar 

  • Choi, I. K., Lee, J. S., Zhang, S. N., Park, J., Sonn, C. H., Lee, K. M., & Yun, C. O. (2011). Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rbeta2 or IL-18Ralpha. Gene Therapy, 18(9), 898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, K. J., Zhang, S. N., Choi, I. K., Kim, J. S., & Yun, C. O. (2012). Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Therapy, 19(7), 711–723.

    Article  CAS  PubMed  Google Scholar 

  • Choi, I. K., Li, Y., Oh, E., Kim, J., & Yun, C. O. (2013). Oncolytic adenovirus expressing IL-23 and p35 elicits IFN-gamma- and TNF-alpha-co-producing T cell-mediated antitumor immunity. PLoS One, 8(7), e67512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cody, J. J., Scaturro, P., Cantor, A. B., Yancey Gillespie, G., Parker, J. N., & Markert, J. M. (2012). Preclinical evaluation of oncolytic deltagamma(1)34.5 herpes simplex virus expressing interleukin-12 for therapy of breast cancer brain metastases. International Journal of Breast Cancer, 2012, 628697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coen, D. M., Kosz-Vnenchak, M., Jacobson, J. G., Leib, D. A., Bogard, C. L., Schaffer, P. A., Tyler, K. L., & Knipe, D. M. (1989). Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proceedings of the National Academy of Sciences of the United States of America, 86(12), 4736–4740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coukos, G., Makrigiannakis, A., Kang, E. H., Caparelli, D., Benjamin, I., Kaiser, L. R., Rubin, S. C., Albelda, S. M., & Molnar-Kimber, K. L. (1999). Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 5(6), 1523–1537.

    CAS  Google Scholar 

  • Currier, M. A., Eshun, F. K., Sholl, A., Chernoguz, A., Crawford, K., Divanovic, S., Boon, L., Goins, W. F., Frischer, J. S., Collins, M. H., Leddon, J. L., Baird, W. H., Haseley, A., Streby, K. A., Wang, P. Y., Hendrickson, B. W., Brekken, R. A., Kaur, B., Hildeman, D., & Cripe, T. P. (2013). VEGF blockade enables oncolytic cancer virotherapy in part by modulating intratumoral myeloid cells. Molecular Therapy: The Journal of the American Society of Gene Therapy, 21(5), 1014–1023.

    Article  CAS  Google Scholar 

  • Dengjel, J., Schoor, O., Fischer, R., Reich, M., Kraus, M., Muller, M., Kreymborg, K., Altenberend, F., Brandenburg, J., Kalbacher, H., Brock, R., Driessen, C., Rammensee, H. G., & Stevanovic, S. (2005). Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proceedings of the National Academy of Sciences of the United States of America, 102(22), 7922–7927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWeese, T. L., van der Poel, H., Li, S., Mikhak, B., Drew, R., Goemann, M., Hamper, U., DeJong, R., Detorie, N., Rodriguez, R., Haulk, T., DeMarzo, A. M., Piantadosi, S., Yu, D. C., Chen, Y., Henderson, D. R., Carducci, M. A., Nelson, W. G., & Simons, J. W. (2001). A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Research, 61(20), 7464–7472.

    CAS  PubMed  Google Scholar 

  • Diallo, J. S., Le Boeuf, F., Lai, F., Cox, J., Vaha-Koskela, M., Abdelbary, H., MacTavish, H., Waite, K., Falls, T., Wang, J., Brown, R., Blanchard, J. E., Brown, E. D., Kirn, D. H., Hiscott, J., Atkins, H., Lichty, B. D., & Bell, J. C. (2010). A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(6), 1123–1129.

    Article  CAS  Google Scholar 

  • Dias, J. D., Hemminki, O., Diaconu, I., Hirvinen, M., Bonetti, A., Guse, K., Escutenaire, S., Kanerva, A., Pesonen, S., Loskog, A., Cerullo, V., & Hemminki, A. (2012). Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Therapy, 19(10), 988–998.

    Article  CAS  PubMed  Google Scholar 

  • Dilley, J., Reddy, S., Ko, D., Nguyen, N., Rojas, G., Working, P., & Yu, D. C. (2005). Oncolytic adenovirus CG7870 in combination with radiation demonstrates synergistic enhancements of antitumor efficacy without loss of specificity. Cancer Gene Therapy, 12(8), 715–722.

    Article  CAS  PubMed  Google Scholar 

  • Dock, G. (1904). The influence of complicating diseases upon leukaemia. American Journal of the Medical Sciences, 127, 563–592.

    Article  Google Scholar 

  • Dong, F., Wang, L., Davis, J. J., Hu, W., Zhang, L., Guo, W., Teraishi, F., Ji, L., & Fang, B. (2006). Eliminating established tumor in nu/nu nude mice by a tumor necrosis factor-alpha-related apoptosis-inducing ligand-armed oncolytic adenovirus. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(17), 5224–5230.

    Article  CAS  Google Scholar 

  • Du, T., Shi, G., Li, Y. M., Zhang, J. F., Tian, H. W., Wei, Y. Q., Deng, H., & Yu, D. C. (2014). Tumor-specific oncolytic adenoviruses expressing granulocyte macrophage colony-stimulating factor or anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Therapy, 21(8), 340–348.

    Article  CAS  PubMed  Google Scholar 

  • Duntsch, C. D., Zhou, Q., Jayakar, H. R., Weimar, J. D., Robertson, J. H., Pfeffer, L. M., Wang, L., Xiang, Z., & Whitt, M. A. (2004). Recombinant vesicular stomatitis virus vectors as oncolytic agents in the treatment of high-grade gliomas in an organotypic brain tissue slice-glioma coculture model. Journal of Neurosurgery, 100(6), 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  • Edukulla, R., Woller, N., Mundt, B., Knocke, S., Gurlevik, E., Saborowski, M., Malek, N., Manns, M. P., Wirth, T., Kuhnel, F., & Kubicka, S. (2009). Antitumoral immune response by recruitment and expansion of dendritic cells in tumors infected with telomerase-dependent oncolytic viruses. Cancer Research, 69(4), 1448–1458.

    Article  PubMed  CAS  Google Scholar 

  • Elankumaran, S., Chavan, V., Qiao, D., Shobana, R., Moorkanat, G., Biswas, M., & Samal, S. K. (2010). Type I interferon-sensitive recombinant newcastle disease virus for oncolytic virotherapy. Journal of Virology, 84(8), 3835–3844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enders, J. F., Weller, T. H., & Robbins, F. C. (1949). Cultivation of the lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science, 109(2822), 85–87.

    Article  CAS  PubMed  Google Scholar 

  • Engeland, C. E., Grossardt, C., Veinalde, R., Bossow, S., Lutz, D., Kaufmann, J. K., Shevchenko, I., Umansky, V., Nettelbeck, D. M., Weichert, W., Jager, D., von Kalle, C., & Ungerechts, G. (2014). CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Molecular Therapy: The Journal of the American Society of Gene Therapy, 22(11), 1949–1959.

    Article  CAS  Google Scholar 

  • Errington, F., Steele, L., Prestwich, R., Harrington, K. J., Pandha, H. S., Vidal, L., de Bono, J., Selby, P., Coffey, M., Vile, R., & Melcher, A. (2008). Reovirus activates human dendritic cells to promote innate antitumor immunity. Journal of Immunology, 180(9), 6018–6026.

    Article  CAS  Google Scholar 

  • Escobar-Zarate, D., Liu, Y. P., Suksanpaisan, L., Russell, S. J., & Peng, K. W. (2013). Overcoming cancer cell resistance to VSV oncolysis with JAK1/2 inhibitors. Cancer Gene Therapy, 20(10), 582–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshun, F. K., Currier, M. A., Gillespie, R. A., Fitzpatrick, J. L., Baird, W. H., & Cripe, T. P. (2010). VEGF blockade decreases the tumor uptake of systemic oncolytic herpes virus but enhances therapeutic efficacy when given after virotherapy. Gene Therapy, 17(7), 922–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, L., Cheng, Q., Bai, J., Qi, Y. D., Liu, J. J., Li, L. T., & Zheng, J. N. (2013). An oncolytic adenovirus expressing interleukin-24 enhances antitumor activities in combination with paclitaxel in breast cancer cells. Molecular Medicine Reports, 8(5), 1416–1424.

    CAS  PubMed  Google Scholar 

  • Figueroa, J. A., Reidy, A., Mirandola, L., Trotter, K., Suvorava, N., Figueroa, A., Konala, V., Aulakh, A., Littlefield, L., Grizzi, F., Rahman, R. L., Jenkins, M. R., Musgrove, B., Radhi, S., D’Cunha, N., D’Cunha, L. N., Hermonat, P. L., Cobos, E., & Chiriva-Internati, M. (2015). Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy. International Reviews of Immunology, 34(2), 154–187.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, N. E., Abdelbary, H., Lupien, M., Bell, J. C., & Diallo, J. S. (2013). Exploiting tumor epigenetics to improve oncolytic virotherapy. Frontiers in Genetics, 4, 184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freeman, A. I., Zakay-Rones, Z., Gomori, J. M., Linetsky, E., Rasooly, L., Greenbaum, E., Rozenman-Yair, S., Panet, A., Libson, E., Irving, C. S., Galun, E., & Siegal, T. (2006). Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Molecular Therapy: The Journal of the American Society of Gene Therapy, 13(1), 221–228.

    Article  CAS  Google Scholar 

  • Frentzen, A., Yu, Y. A., Chen, N., Zhang, Q., Weibel, S., Raab, V., & Szalay, A. A. (2009). Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12915–12920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freytag, S. O., Barton, K. N., & Zhang, Y. (2013). Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Therapy, 20(12), 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Fu, X., Rivera, A., Tao, L., & Zhang, X. (2012). Incorporation of the B18R gene of vaccinia virus into an oncolytic herpes simplex virus improves antitumor activity. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(10), 1871–1881.

    Article  CAS  Google Scholar 

  • Fu, X., Rivera, A., Tao, L., & Zhang, X. (2015). An HSV-2 based oncolytic virus can function as an attractant to guide migration of adoptively transferred T cells to tumor sites. Oncotarget, 6(2), 902–914.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fueyo, J., Alemany, R., Gomez-Manzano, C., Fuller, G. N., Khan, A., Conrad, C. A., Liu, T. J., Jiang, H., Lemoine, M. G., Suzuki, K., Sawaya, R., Curiel, D. T., Yung, W. K., & Lang, F. F. (2003). Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. Journal of the National Cancer Institute, 95(9), 652–660.

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara, H., Ino, Y., Kuroda, T., Martuza, R. L., & Todo, T. (2005). Triple gene-deleted oncolytic herpes simplex virus vector double-armed with interleukin 18 and soluble B7-1 constructed by bacterial artificial chromosome-mediated system. Cancer Research, 65(23), 10663–10668.

    Article  CAS  PubMed  Google Scholar 

  • Fulci, G., Dmitrieva, N., Gianni, D., Fontana, E. J., Pan, X., Lu, Y., Kaufman, C. S., Kaur, B., Lawler, S. E., Lee, R. J., Marsh, C. B., Brat, D. J., van Rooijen, N., Stemmer-Rachamimov, A. O., Hochberg, F. H., Weissleder, R., Martuza, R. L., & Chiocca, E. A. (2007). Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Research, 67(19), 9398–9406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galivo, F., Diaz, R. M., Thanarajasingam, U., Jevremovic, D., Wongthida, P., Thompson, J., Kottke, T., Barber, G. N., Melcher, A., & Vile, R. G. (2010). Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Human Gene Therapy, 21(4), 439–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi, L., & Lugli, E. (2013). Cancer immunotherapy turns viral. Oncoimmunology, 2(4), e24802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesh, S., Gonzalez Edick, M., Idamakanti, N., Abramova, M., Vanroey, M., Robinson, M., Yun, C. O., & Jooss, K. (2007). Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice. Cancer Research, 67(9), 4399–4407.

    Article  CAS  PubMed  Google Scholar 

  • Ganly, I., Kirn, D., Eckhardt, G., Rodriguez, G. I., Soutar, D. S., Otto, R., Robertson, A. G., Park, O., Gulley, M. L., Heise, C., Von Hoff, D. D., & Kaye, S. B. (2000). A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 6(3), 798–806.

    CAS  Google Scholar 

  • Gao, Y., Whitaker-Dowling, P., Griffin, J. A., Barmada, M. A., & Bergman, I. (2009). Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Therapy, 16(1), 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Garber, K. (2006). China approves world’s first oncolytic virus therapy for cancer treatment. Journal of the National Cancer Institute, 98(5), 298–300.

    Article  PubMed  Google Scholar 

  • Gaston, D. C., Odom, C. I., Li, L., Markert, J. M., Roth, J. C., Cassady, K. A., Whitley, R. J., & Parker, J. N. (2013). Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1. PLoS ONE, 8(11), e81768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauvrit, A., Brandler, S., Sapede-Peroz, C., Boisgerault, N., Tangy, F., & Gregoire, M. (2008). Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Research, 68(12), 4882–4892.

    Article  CAS  PubMed  Google Scholar 

  • Georgiades, J., Zielinski, T., Cicholska, A., & Jordan, E. (1959). Research on the oncolytic effect of APC viruses in cancer of the cervix uteri; preliminary report. Biuletyn Instytutu Medycyny Morskiej w Gdańsku, 10, 49–57.

    CAS  PubMed  Google Scholar 

  • Gholami, S., Marano, A., Chen, N. G., Aguilar, R. J., Frentzen, A., Chen, C. H., Lou, E., Fujisawa, S., Eveno, C., Belin, L., Zanzonico, P., Szalay, A., & Fong, Y. (2014). A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Research and Treatment, 148(3), 489–499.

    Article  CAS  PubMed  Google Scholar 

  • Gil, M., Seshadri, M., Komorowski, M. P., Abrams, S. I., & Kozbor, D. (2013). Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proceedings of the National Academy of Sciences of the United States of America, 110(14), E1291–E1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil, M., Komorowski, M. P., Seshadri, M., Rokita, H., McGray, A. J., Opyrchal, M., Odunsi, K. O., & Kozbor, D. (2014). CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. Journal of Immunology, 193(10), 5327–5337.

    Article  CAS  Google Scholar 

  • Goetz, C., Dobrikova, E., Shveygert, M., Dobrikov, M., & Gromeier, M. (2011). Oncolytic poliovirus against malignant glioma. Future Virology, 6(9), 1045–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, E. M., Rodrigues, M. S., Phadke, A. P., Butcher, L. D., Starling, C., Chen, S., Chang, D., Hernandez-Alcoceba, R., Newman, J. T., Stone, M. J., & Tong, A. W. (2009). Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(4), 1317–1325.

    Article  CAS  Google Scholar 

  • Green, D. R., Ferguson, T., Zitvogel, L., & Kroemer, G. (2009). Immunogenic and tolerogenic cell death. Nature Reviews Immunology, 9(5), 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross, S. (1971). Measles and leukaemia. Lancet, 1(7695), 397–398.

    Article  CAS  PubMed  Google Scholar 

  • Grossardt, C., Engeland, C. E., Bossow, S., Halama, N., Zaoui, K., Leber, M. F., Springfeld, C., Jaeger, D., von Kalle, C., & Ungerechts, G. (2013). Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Human Gene Therapy, 24(7), 644–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grote, D., Russell, S. J., Cornu, T. I., Cattaneo, R., Vile, R., Poland, G. A., & Fielding, A. K. (2001). Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood, 97(12), 3746–3754.

    Article  CAS  PubMed  Google Scholar 

  • Grote, D., Cattaneo, R., & Fielding, A. K. (2003). Neutrophils contribute to the measles virus-induced antitumor effect: Enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Research, 63(19), 6463–6468.

    CAS  PubMed  Google Scholar 

  • Guedan, S., Grases, D., Rojas, J. J., Gros, A., Vilardell, F., Vile, R., Mercade, E., Cascallo, M., & Alemany, R. (2012). GALV expression enhances the therapeutic efficacy of an oncolytic adenovirus by inducing cell fusion and enhancing virus distribution. Gene Therapy, 19(11), 1048–1057.

    Article  CAS  PubMed  Google Scholar 

  • Hammon, W. M., Yohn, D. S., Casto, B. C., & Atchison, R. W. (1963). Oncolytic potentials Of nonhuman viruses for human cancer. I. Effects of twenty-four viruses on human cancer cell lines. Journal of the National Cancer Institute, 31, 329–345.

    CAS  PubMed  Google Scholar 

  • Han, Z. Q., Assenberg, M., Liu, B. L., Wang, Y. B., Simpson, G., Thomas, S., & Coffin, R. S. (2007). Development of a second-generation oncolytic Herpes simplex virus expressing TNFalpha for cancer therapy. The Journal of Gene Medicine, 9(2), 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Harada, J. N., & Berk, A. J. (1999). p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. Journal of Virology, 73(7), 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heine, A., Held, S. A., Daecke, S. N., Wallner, S., Yajnanarayana, S. P., Kurts, C., Wolf, D., & Brossart, P. (2013). The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood, 122(7), 1192–1202.

    Article  CAS  PubMed  Google Scholar 

  • Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., & Kirn, D. H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Medicine, 3(6), 639–645.

    Article  CAS  PubMed  Google Scholar 

  • Heo, J., Reid, T., Ruo, L., Breitbach, C. J., Rose, S., Bloomston, M., Cho, M., Lim, H. Y., Chung, H. C., Kim, C. W., Burke, J., Lencioni, R., Hickman, T., Moon, A., Lee, Y. S., Kim, M. K., Daneshmand, M., Dubois, K., Longpre, L., Ngo, M., Rooney, C., Bell, J. C., Rhee, B. G., Patt, R., Hwang, T. H., & Kirn, D. H. (2013). Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature Medicine, 19(3), 329–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoster, H. A., Zanes, R. P., Jr., & Von Haam, E. (1949). Studies in Hodgkin’s syndrome; the association of viral hepatitis and Hodgkin’s disease; a preliminary report. Cancer Research, 9(8), 473–480.

    CAS  PubMed  Google Scholar 

  • Hou, W., Chen, H., Rojas, J., Sampath, P., & Thorne, S. H. (2014). Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. International Journal of Cancer Journal International du Cancer, 135(5), 1238–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J. C., Coffin, R. S., Davis, C. J., Graham, N. J., Groves, N., Guest, P. J., Harrington, K. J., James, N. D., Love, C. A., McNeish, I., Medley, L. C., Michael, A., Nutting, C. M., Pandha, H. S., Shorrock, C. A., Simpson, J., Steiner, J., Steven, N. M., Wright, D., & Coombes, R. C. (2006). A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(22), 6737–6747.

    Article  CAS  Google Scholar 

  • Hu, Z. B., Wu, C. T., Wang, H., Zhang, Q. W., Wang, L., Wang, R. L., Lu, Z. Z., & Wang, L. S. (2008). A simplified system for generating oncolytic adenovirus vector carrying one or two transgenes. Cancer Gene Therapy, 15(3), 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z., Gupta, J., Zhang, Z., Gerseny, H., Berg, A., Chen, Y. J., Zhang, Z., Du, H., Brendler, C. B., Xiao, X., Pienta, K. J., Guise, T., Lee, C., Stern, P. H., Stock, S., & Seth, P. (2012). Systemic delivery of oncolytic adenoviruses targeting transforming growth factor-beta inhibits established bone metastasis in a prostate cancer mouse model. Human Gene Therapy, 23(8), 871–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, P. I., Chang, J. F., Kirn, D. H., & Liu, T. C. (2009). Targeted genetic and viral therapy for advanced head and neck cancers. Drug Discovery Today, 14(11–12), 570–578.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. H., Zhang, S. N., Choi, K. J., Choi, I. K., Kim, J. H., Lee, M. G., Kim, H., & Yun, C. O. (2010). Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(2), 264–274.

    Article  CAS  Google Scholar 

  • Huang, T. T., Hlavaty, J., Ostertag, D., Espinoza, F. L., Martin, B., Petznek, H., Rodriguez-Aguirre, M., Ibanez, C. E., Kasahara, N., Gunzburg, W., Gruber, H. E., Pertschuk, D., Jolly, D. J., & Robbins, J. M. (2013). Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Therapy, 20(10), 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Ino, Y., Saeki, Y., Fukuhara, H., & Todo, T. (2006). Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(2), 643–652.

    Article  CAS  Google Scholar 

  • Inoue, H., & Tani, K. (2014). Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death and Differentiation, 21(1), 39–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenks, N., Myers, R., Greiner, S. M., Thompson, J., Mader, E. K., Greenslade, A., Griesmann, G. E., Federspiel, M. J., Rakela, J., Borad, M. J., Vile, R. G., Barber, G. N., Meier, T. R., Blanco, M. C., Carlson, S. K., Russell, S. J., & Peng, K. W. (2010). Safety studies on intrahepatic or intratumoral injection of oncolytic vesicular stomatitis virus expressing interferon-beta in rodents and nonhuman primates. Human Gene Therapy, 21(4), 451–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, J., Liu, H., Yang, C., Li, G., Liu, X., Qian, Q., & Qian, W. (2009). Effective gene-viral therapy of leukemia by a new fiber chimeric oncolytic adenovirus expressing TRAIL: In vitro and in vivo evaluation. Molecular Cancer Therapeutics, 8(5), 1387–1397.

    Article  CAS  PubMed  Google Scholar 

  • Joffre, O., Nolte, M. A., Sporri, R., & Reis e Sousa, C. (2009). Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunological Reviews, 227(1), 234–247.

    Article  CAS  PubMed  Google Scholar 

  • John, L. B., Howland, L. J., Flynn, J. K., West, A. C., Devaud, C., Duong, C. P., Stewart, T. J., Westwood, J. A., Guo, Z. S., Bartlett, D. L., Smyth, M. J., Kershaw, M. H., & Darcy, P. K. (2012). Oncolytic virus and anti-4-1BB combination therapy elicits strong antitumor immunity against established cancer. Cancer Research, 72(7), 1651–1660.

    Article  CAS  PubMed  Google Scholar 

  • Kanai, R., Wakimoto, H., Martuza, R. L., & Rabkin, S. D. (2011). A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17(11), 3686–3696.

    Article  CAS  Google Scholar 

  • Kanerva, A., Nokisalmi, P., Diaconu, I., Koski, A., Cerullo, V., Liikanen, I., Tahtinen, S., Oksanen, M., Heiskanen, R., Pesonen, S., Joensuu, T., Alanko, T., Partanen, K., Laasonen, L., Kairemo, K., Pesonen, S., Kangasniemi, L., & Hemminki, A. (2013). Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(10), 2734–2744.

    Article  CAS  Google Scholar 

  • Kaufman, H. L., & Bines, S. D. (2010). OPTIM trial: A Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncology, 6(6), 941–949.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, H. L., Kim, D. W., DeRaffele, G., Mitcham, J., Coffin, R. S., & Kim-Schulze, S. (2010). Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Annals of Surgical Oncology, 17(3), 718–730.

    Article  PubMed  Google Scholar 

  • Kelly, E. J., & Russell, S. J. (2009). MicroRNAs and the regulation of vector tropism. Molecular Therapy: The Journal of the American Society of Gene Therapy, 17(3), 409–416.

    Article  CAS  Google Scholar 

  • Kelly, E. J., Hadac, E. M., Greiner, S., & Russell, S. J. (2008). Engineering microRNA responsiveness to decrease virus pathogenicity. Nature Medicine, 14(11), 1278–1283.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, K., Nawrocki, S., Mita, A., Coffey, M., Giles, F. J., & Mita, M. (2009). Reovirus-based therapy for cancer. Expert Opinion on Biological Therapy, 9(7), 817–830.

    Article  CAS  PubMed  Google Scholar 

  • Kenney, S., & Pagano, J. S. (1994). Viruses as oncolytic agents: A new age for “therapeutic” viruses? Journal of the National Cancer Institute, 86(16), 1185–1186.

    Article  CAS  PubMed  Google Scholar 

  • Khuri, F. R., Nemunaitis, J., Ganly, I., Arseneau, J., Tannock, I. F., Romel, L., Gore, M., Ironside, J., MacDougall, R. H., Heise, C., Randlev, B., Gillenwater, A. M., Bruso, P., Kaye, S. B., Hong, W. K., & Kirn, D. H. (2000). A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Medicine, 6(8), 879–885.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. S., Kim-Schulze, S., Kim, D. W., & Kaufman, H. L. (2009). Host lymphodepletion enhances the therapeutic activity of an oncolytic vaccinia virus expressing 4-1BB ligand. Cancer Research, 69(21), 8516–8525.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W., Seong, J., Oh, H. J., Koom, W. S., Choi, K. J., & Yun, C. O. (2011). A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. Journal of Radiation Research, 52(5), 646–654.

    Article  CAS  PubMed  Google Scholar 

  • Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J., & Thorne, S. H. (2007). Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Medicine, 4(12), e353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koski, A., Kangasniemi, L., Escutenaire, S., Pesonen, S., Cerullo, V., Diaconu, I., Nokisalmi, P., Raki, M., Rajecki, M., Guse, K., Ranki, T., Oksanen, M., Holm, S. L., Haavisto, E., Karioja-Kallio, A., Laasonen, L., Partanen, K., Ugolini, M., Helminen, A., Karli, E., Hannuksela, P., Pesonen, S., Joensuu, T., Kanerva, A., & Hemminki, A. (2010). Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(10), 1874–1884.

    Article  CAS  Google Scholar 

  • Kottke, T., Galivo, F., Wongthida, P., Diaz, R. M., Thompson, J., Jevremovic, D., Barber, G. N., Hall, G., Chester, J., Selby, P., Harrington, K., Melcher, A., & Vile, R. G. (2008). Treg depletion-enhanced IL-2 treatment facilitates therapy of established tumors using systemically delivered oncolytic virus. Molecular Therapy: The Journal of the American Society of Gene Therapy, 16(7), 1217–1226.

    Article  CAS  Google Scholar 

  • Kottke, T., Thompson, J., Diaz, R. M., Pulido, J., Willmon, C., Coffey, M., Selby, P., Melcher, A., Harrington, K., & Vile, R. G. (2009). Improved systemic delivery of oncolytic reovirus to established tumors using preconditioning with cyclophosphamide-mediated Treg modulation and interleukin-2. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(2), 561–569.

    Article  CAS  Google Scholar 

  • Krysko, D. V., Garg, A. D., Kaczmarek, A., Krysko, O., Agostinis, P., & Vandenabeele, P. (2012). Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 12(12), 860–875.

    Article  CAS  PubMed  Google Scholar 

  • Kueberuwa, G., Cawood, R., & Seymour, L. W. (2010). Blood compatibility of enveloped viruses. Current Opinion in Molecular Therapeutics, 12(4), 412–420.

    CAS  PubMed  Google Scholar 

  • Kuhn, I., Harden, P., Bauzon, M., Chartier, C., Nye, J., Thorne, S., Reid, T., Ni, S., Lieber, A., Fisher, K., Seymour, L., Rubanyi, G. M., Harkins, R. N., & Hermiston, T. W. (2008). Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS ONE, 3(6), e2409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, S., Gao, L., Yeagy, B., & Reid, T. (2008). Virus combinations and chemotherapy for the treatment of human cancers. Current Opinion in Molecular Therapeutics, 10(4), 371–379.

    PubMed  Google Scholar 

  • Kuriyama, N., Kuriyama, H., Julin, C. M., Lamborn, K., & Israel, M. A. (2000). Pretreatment with protease is a useful experimental strategy for enhancing adenovirus-mediated cancer gene therapy. Human Gene Therapy, 11(16), 2219–2230.

    Article  CAS  PubMed  Google Scholar 

  • Lapteva, N., Aldrich, M., Weksberg, D., Rollins, L., Goltsova, T., Chen, S. Y., & Huang, X. F. (2009). Targeting the intratumoral dendritic cells by the oncolytic adenoviral vaccine expressing RANTES elicits potent antitumor immunity. Journal of Immunotherapy, 32(2), 145–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaRocca, C. J., Han, J., Gavrikova, T., Armstrong, L., Oliveira, A. R., Shanley, R., Vickers, S. M., Yamamoto, M., & Davydova, J. (2015). Oncolytic adenovirus expressing interferon alpha in a syngeneic Syrian hamster model for the treatment of pancreatic cancer. Surgery, 157(5), 888–898.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavilla-Alonso, S., Bauer, M. M., Abo-Ramadan, U., Ristimaki, A., Halavaara, J., Desmond, R. A., Wang, D., Escutenaire, S., Ahtiainen, L., Saksela, K., Tatlisumak, T., Hemminki, A., & Pesonen, S. (2012). Macrophage metalloelastase (MME) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Therapy, 19(2), 126–134.

    Article  CAS  PubMed  Google Scholar 

  • Le Boeuf, F., Batenchuk, C., Vaha-Koskela, M., Breton, S., Roy, D., Lemay, C., Cox, J., Abdelbary, H., Falls, T., Waghray, G., Atkins, H., Stojdl, D., Diallo, J. S., Kaern, M., & Bell, J. C. (2013). Model-based rational design of an oncolytic virus with improved therapeutic potential. Nature Communications, 4, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. S., Kim, J. H., Choi, K. J., Choi, I. K., Kim, H., Cho, S., Cho, B. C., & Yun, C. O. (2006). Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(19), 5859–5868.

    Article  CAS  Google Scholar 

  • Lei, N., Shen, F. B., Chang, J. H., Wang, L., Li, H., Yang, C., Li, J., & Yu, D. C. (2009). An oncolytic adenovirus expressing granulocyte macrophage colony-stimulating factor shows improved specificity and efficacy for treating human solid tumors. Cancer Gene Therapy, 16(1), 33–43.

    Article  CAS  PubMed  Google Scholar 

  • Lerner, B. H. (2004). Sins of omission – cancer research without informed consent. The New England Journal of Medicine, 351(7), 628–630.

    Article  CAS  PubMed  Google Scholar 

  • Leveille, S., Goulet, M. L., Lichty, B. D., & Hiscott, J. (2011). Vesicular stomatitis virus oncolytic treatment interferes with tumor-associated dendritic cell functions and abrogates tumor antigen presentation. Journal of Virology, 85(23), 12160–12169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Wang, L. X., Yang, G., Hao, F., Urba, W. J., & Hu, H. M. (2008). Efficient cross-presentation depends on autophagy in tumor cells. Cancer Research, 68(17), 6889–6895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. L., Liu, H. L., Zhang, X. R., Xu, J. P., Hu, W. K., Liang, M., Chen, S. Y., Hu, F., & Chu, D. T. (2009). A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Therapy, 16(3), 376–382.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Peng, K. W., Dingli, D., Kratzke, R. A., & Russell, S. J. (2010). Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Therapy, 17(8), 550–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., O’Malley, M., Urban, J., Sampath, P., Guo, Z. S., Kalinski, P., Thorne, S. H., & Bartlett, D. L. (2011). Chemokine expression from oncolytic vaccinia virus enhances vaccine therapies of cancer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 19(4), 650–657.

    Article  CAS  Google Scholar 

  • Li, J., O’Malley, M., Sampath, P., Kalinski, P., Bartlett, D. L., & Thorne, S. H. (2012). Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia, 14(12), 1115–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Liu, H., Li, L., Wu, H., Wang, C., Yan, Z., Wang, Y., Su, C., Jin, H., Zhou, F., Wu, M., & Qian, Q. (2013). The combination of an oxygen-dependent degradation domain-regulated adenovirus expressing the chemokine RANTES/CCL5 and NK-92 cells exerts enhanced antitumor activity in hepatocellular carcinoma. Oncology Reports, 29(3), 895–902.

    PubMed  PubMed Central  Google Scholar 

  • Lichty, B. D., Breitbach, C. J., Stojdl, D. F., & Bell, J. C. (2014). Going viral with cancer immunotherapy. Nature Reviews Cancer, 14(8), 559–567.

    Article  CAS  PubMed  Google Scholar 

  • Lindenmann, J., & Klein, P. A. (1967). Viral oncolysis: Increased immunogenicity of host cell antigen associated with influenza virus. The Journal of Experimental Medicine, 126(1), 93–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B. L., Robinson, M., Han, Z. Q., Branston, R. H., English, C., Reay, P., McGrath, Y., Thomas, S. K., Thornton, M., Bullock, P., Love, C. A., & Coffin, R. S. (2003). ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy, 10(4), 292–303.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. Y., Qiu, S. B., Zou, W. G., Pei, Z. F., Gu, J. F., Luo, C. X., Ruan, H. M., Chen, Y., Qi, Y. P., & Qian, C. (2005). Effective gene-virotherapy for complete eradication of tumor mediated by the combination of hTRAIL (TNFSF10) and plasminogen k5. Molecular Therapy: The Journal of the American Society of Gene Therapy, 11(4), 531–541.

    Article  CAS  Google Scholar 

  • Liu, T. C., Galanis, E., & Kirn, D. (2007). Clinical trial results with oncolytic virotherapy: A century of promise, a decade of progress. Nature Clinical Practice Oncology, 4(2), 101–117.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Wennier, S., Reinhard, M., Roy, E., MacNeill, A., & McFadden, G. (2009). Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits. Journal of Virology, 83(11), 5933–5938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Cao, X., Wei, R., Cai, Y., Li, H., Gui, J., Zhong, D., Liu, X. Y., & Huang, K. (2012). Gene-viro-therapy targeting liver cancer by a dual-regulated oncolytic adenoviral vector harboring IL-24 and TRAIL. Cancer Gene Therapy, 19(1), 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. P., Suksanpaisan, L., Steele, M. B., Russell, S. J., & Peng, K. W. (2013). Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Scientific Reports, 3, 2375.

    PubMed  PubMed Central  Google Scholar 

  • Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: A dynamic niche in cancer progression. The Journal of Cell Biology, 196(4), 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKie, R. M., Stewart, B., & Brown, S. M. (2001). Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet, 357(9255), 525–526.

    Article  CAS  PubMed  Google Scholar 

  • Magge, D., Guo, Z. S., O’Malley, M. E., Francis, L., Ravindranathan, R., & Bartlett, D. L. (2013). Inhibitors of C5 complement enhance vaccinia virus oncolysis. Cancer Gene Therapy, 20(6), 342–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney, D. J., Lefebvre, C., Allan, K., Brun, J., Sanaei, C. A., Baird, S., Pearce, N., Gronberg, S., Wilson, B., Prakesh, M., Aman, A., Isaac, M., Mamai, A., Uehling, D., Al-Awar, R., Falls, T., Alain, T., & Stojdl, D. F. (2011). Virus-tumor interactome screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death. Cancer Cell, 20(4), 443–456.

    Article  CAS  PubMed  Google Scholar 

  • Marabelle, A., Kohrt, H., Sagiv-Barfi, I., Ajami, B., Axtell, R. C., Zhou, G., Rajapaksa, R., Green, M. R., Torchia, J., Brody, J., Luong, R., Rosenblum, M. D., Steinman, L., Levitsky, H. I., Tse, V., & Levy, R. (2013). Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. The Journal of Clinical Investigation, 123(6), 2447–2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markert, J. M., Malick, A., Coen, D. M., & Martuza, R. L. (1993). Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery, 32(4), 597–603.

    Article  CAS  PubMed  Google Scholar 

  • Martuza, R. L., Malick, A., Markert, J. M., Ruffner, K. L., & Coen, D. M. (1991). Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science, 252(5007), 854–856.

    Article  CAS  PubMed  Google Scholar 

  • Mastrangelo, M. J., Maguire, H. C., Jr., Eisenlohr, L. C., Laughlin, C. E., Monken, C. E., McCue, P. A., Kovatich, A. J., & Lattime, E. C. (1999). Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Therapy, 6(5), 409–422.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, F. (2000). ONYX-015 selectivity and the p14ARF pathway. Oncogene, 19(56), 6670–6672.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, F. (2003). Cancer-specific viruses and the development of ONYX-015. Cancer Biology & Therapy, 2(4 Suppl 1), S157–S160.

    CAS  Google Scholar 

  • McKee, T. D., Grandi, P., Mok, W., Alexandrakis, G., Insin, N., Zimmer, J. P., Bawendi, M. G., Boucher, Y., Breakefield, X. O., & Jain, R. K. (2006). Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Research, 66(5), 2509–2513.

    Article  CAS  PubMed  Google Scholar 

  • Melcher, A., Todryk, S., Hardwick, N., Ford, M., Jacobson, M., & Vile, R. G. (1998). Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Medicine, 4(5), 581–587.

    Article  CAS  PubMed  Google Scholar 

  • Meng, X., Nakamura, T., Okazaki, T., Inoue, H., Takahashi, A., Miyamoto, S., Sakaguchi, G., Eto, M., Naito, S., Takeda, M., Yanagi, Y., & Tani, K. (2010). Enhanced antitumor effects of an engineered measles virus Edmonston strain expressing the wild-type N, P, L genes on human renal cell carcinoma. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(3), 544–551.

    Article  CAS  Google Scholar 

  • Miller, J. M., Bidula, S. M., Jensen, T. M., & Reiss, C. S. (2010). Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo. International Journal of Interferon Cytokine and Mediator Research: IJIM, 2010(2), 63–72.

    Google Scholar 

  • Minchinton, A. I., & Tannock, I. F. (2006). Drug penetration in solid tumours. Nature Reviews Cancer, 6(8), 583–592.

    Article  CAS  PubMed  Google Scholar 

  • Moerdyk-Schauwecker, M., Shah, N. R., Murphy, A. M., Hastie, E., Mukherjee, P., & Grdzelishvili, V. Z. (2013). Resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus: Role of type I interferon signaling. Virology, 436(1), 221–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molomut, N., & Padnos, M. (1965). Inhibition of transplantable and spontaneous murine tumours by the M-P virus. Nature, 208(5014), 948–950.

    Article  CAS  PubMed  Google Scholar 

  • Moore, A. E. (1949). The destructive effect of the virus of Russian Far East encephalitis on the transplantable mouse sarcoma 180. Cancer, 2(3), 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Moore, A. E. (1951). Inhibition of growth of five transplantable mouse tumors by the virus of Russian Far East encephalitis. Cancer, 4(2), 375–382.

    Article  CAS  PubMed  Google Scholar 

  • Moore, A. E. (1952). Viruses with oncolytic properties and their adaptation to tumors. Annals of the New York Academy of Sciences, 54(6), 945–952.

    Article  CAS  PubMed  Google Scholar 

  • Mori, I., Liu, B., Goshima, F., Ito, H., Koide, N., Yoshida, T., Yokochi, T., Kimura, Y., & Nishiyama, Y. (2005). HF10, an attenuated herpes simplex virus (HSV) type 1 clone, lacks neuroinvasiveness and protects mice against lethal challenge with HSV types 1 and 2. Microbes and Infection/Institut Pasteur, 7(15), 1492–1500.

    Article  CAS  PubMed  Google Scholar 

  • Msaouel, P., Iankov, I. D., Dispenzieri, A., & Galanis, E. (2012). Attenuated oncolytic measles virus strains as cancer therapeutics. Current Pharmaceutical Biotechnology, 13(9), 1732–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhlbauer, M., Fleck, M., Schutz, C., Weiss, T., Froh, M., Blank, C., Scholmerich, J., & Hellerbrand, C. (2006). PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. Journal of Hepatology, 45(4), 520–528.

    Article  PubMed  CAS  Google Scholar 

  • Muller, U., Steinhoff, U., Reis, L. F., Hemmi, S., Pavlovic, J., Zinkernagel, R. M., & Aguet, M. (1994). Functional role of type I and type II interferons in antiviral defense. Science, 264(5167), 1918–1921.

    Article  CAS  PubMed  Google Scholar 

  • Murray, D. R., Cassel, W. A., Torbin, A. H., Olkowski, Z. L., & Moore, M. E. (1977). Viral oncolysate in the management of malignant melanoma. II. Clinical studies. Cancer, 40(2), 680–686.

    Article  CAS  PubMed  Google Scholar 

  • Muthana, M., Rodrigues, S., Chen, Y. Y., Welford, A., Hughes, R., Tazzyman, S., Essand, M., Morrow, F., & Lewis, C. E. (2013). Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Research, 73(2), 490–495.

    Article  CAS  PubMed  Google Scholar 

  • Nagano, S., Perentes, J. Y., Jain, R. K., & Boucher, Y. (2008). Cancer cell death enhances the penetration and efficacy of oncolytic herpes simplex virus in tumors. Cancer Research, 68(10), 3795–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik, S., Nace, R., Barber, G. N., & Russell, S. J. (2012). Potent systemic therapy of multiple myeloma utilizing oncolytic vesicular stomatitis virus coding for interferon-beta. Cancer Gene Therapy, 19(7), 443–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima, H., Kaur, B., & Chiocca, E. A. (2010). Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine & Growth Factor Reviews, 21(2–3), 119–126.

    Article  CAS  Google Scholar 

  • Nemunaitis, J., Khuri, F., Ganly, I., Arseneau, J., Posner, M., Vokes, E., Kuhn, J., McCarty, T., Landers, S., Blackburn, A., Romel, L., Randlev, B., Kaye, S., & Kirn, D. (2001). Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 19(2), 289–298.

    CAS  Google Scholar 

  • Nguyen, A., Ho, L., & Wan, Y. (2014). Chemotherapy and oncolytic virotherapy: Advanced tactics in the war against cancer. Frontiers in Oncology, 4, 145.

    PubMed  PubMed Central  Google Scholar 

  • O’Shea, C. C., Johnson, L., Bagus, B., Choi, S., Nicholas, C., Shen, A., Boyle, L., Pandey, K., Soria, C., Kunich, J., Shen, Y., Habets, G., Ginzinger, D., & McCormick, F. (2004). Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell, 6(6), 611–623.

    Article  PubMed  Google Scholar 

  • O’Shea, C. C., Soria, C., Bagus, B., & McCormick, F. (2005). Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell, 8(1), 61–74.

    Article  PubMed  CAS  Google Scholar 

  • Obuchi, M., Fernandez, M., & Barber, G. N. (2003). Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. Journal of Virology, 77(16), 8843–8856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottolino-Perry, K., Diallo, J. S., Lichty, B. D., Bell, J. C., & McCart, J. A. (2010). Intelligent design: Combination therapy with oncolytic viruses. Molecular Therapy: The Journal of the American Society of Gene Therapy, 18(2), 251–263.

    Article  CAS  Google Scholar 

  • Paglino, J. C., & van den Pol, A. N. (2011). Vesicular stomatitis virus has extensive oncolytic activity against human sarcomas: Rare resistance is overcome by blocking interferon pathways. Journal of Virology, 85(18), 9346–9358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, B. H., Hwang, T., Liu, T. C., Sze, D. Y., Kim, J. S., Kwon, H. C., Oh, S. Y., Han, S. Y., Yoon, J. H., Hong, S. H., Moon, A., Speth, K., Park, C., Ahn, Y. J., Daneshmand, M., Rhee, B. G., Pinedo, H. M., Bell, J. C., & Kirn, D. H. (2008). Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: A phase I trial. The Lancet Oncology, 9(6), 533–542.

    Article  CAS  PubMed  Google Scholar 

  • Parker, J. N., Gillespie, G. Y., Love, C. E., Randall, S., Whitley, R. J., & Markert, J. M. (2000). Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 97(5), 2208–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker, J. N., Meleth, S., Hughes, K. B., Gillespie, G. Y., Whitley, R. J., & Markert, J. M. (2005). Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Therapy, 12(4), 359–368.

    Article  CAS  PubMed  Google Scholar 

  • Parrish, C. R., & Kawaoka, Y. (2005). The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses. Annual Review of Microbiology, 59, 553–586.

    Article  CAS  PubMed  Google Scholar 

  • Parviainen, S., Ahonen, M., Diaconu, I., Hirvinen, M., Karttunen, A., Vaha-Koskela, M., Hemminki, A., & Cerullo, V. (2014). CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging. Gene Therapy, 21(2), 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Pasquinucci, G. (1971). Possible effect of measles on leukaemia. Lancet, 1(7690), 136.

    Article  CAS  PubMed  Google Scholar 

  • Passer, B. J., Cheema, T., Zhou, B., Wakimoto, H., Zaupa, C., Razmjoo, M., Sarte, J., Wu, S., Wu, C. L., Noah, J. W., Li, Q., Buolamwini, J. K., Yen, Y., Rabkin, S. D., & Martuza, R. L. (2010). Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication. Cancer Research, 70(10), 3890–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passer, B. J., Cheema, T., Wu, S., Wu, C. L., Rabkin, S. D., & Martuza, R. L. (2013). Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Therapy, 20(1), 17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, M. R., & Kratzke, R. A. (2013). Oncolytic virus therapy for cancer: The first wave of translational clinical trials. Translational Research: The Journal of Laboratory and Clinical Medicine, 161(4), 355–364.

    Article  CAS  Google Scholar 

  • Pearson, S., Jia, H., & Kandachi, K. (2004). China approves first gene therapy. Nature Biotechnology, 22(1), 3–4.

    Article  CAS  PubMed  Google Scholar 

  • Pelner, L., Fowler, G. A., & Nauts, H. C. (1958). Effects of concurrent infections and their toxins on the course of leukemia. Acta Medica Scandinavica. Supplementum, 338, 1–47.

    CAS  PubMed  Google Scholar 

  • Perez, O. D., Logg, C. R., Hiraoka, K., Diago, O., Burnett, R., Inagaki, A., Jolson, D., Amundson, K., Buckley, T., Lohse, D., Lin, A., Burrascano, C., Ibanez, C., Kasahara, N., Gruber, H. E., & Jolly, D. J. (2012). Design and selection of Toca 511 for clinical use: Modified retroviral replicating vector with improved stability and gene expression. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(9), 1689–1698.

    Article  CAS  Google Scholar 

  • Pesonen, S., Diaconu, I., Kangasniemi, L., Ranki, T., Kanerva, A., Pesonen, S. K., Gerdemann, U., Leen, A. M., Kairemo, K., Oksanen, M., Haavisto, E., Holm, S. L., Karioja-Kallio, A., Kauppinen, S., Partanen, K. P., Laasonen, L., Joensuu, T., Alanko, T., Cerullo, V., & Hemminki, A. (2012). Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: Assessment of safety and immunologic responses in patients. Cancer Research, 72(7), 1621–1631.

    Article  CAS  PubMed  Google Scholar 

  • Pol, J., Bloy, N., Obrist, F., Eggermont, A., Galon, J., Cremer, I., Erbs, P., Limacher, J. M., Preville, X., Zitvogel, L., Kroemer, G., & Galluzzi, L. (2014). Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology, 3, e28694.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pond, A. R., & Manuelidis, E. E. (1964). Oncolytic effect of poliomyelitis virus on human epidermoid carcinoma (Hela Tumor) heterologously transplanted to Guinea Pigs. The American Journal of Pathology, 45, 233–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Post, D. E., Sandberg, E. M., Kyle, M. M., Devi, N. S., Brat, D. J., Xu, Z., Tighiouart, M., & Van Meir, E. G. (2007). Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Research, 67(14), 6872–6881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power, A. T., & Bell, J. C. (2008). Taming the Trojan horse: Optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Therapy, 15(10), 772–779.

    Article  CAS  PubMed  Google Scholar 

  • Prestwich, R. J., Ilett, E. J., Errington, F., Diaz, R. M., Steele, L. P., Kottke, T., Thompson, J., Galivo, F., Harrington, K. J., Pandha, H. S., Selby, P. J., Vile, R. G., & Melcher, A. A. (2009). Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15(13), 4374–4381.

    Article  CAS  Google Scholar 

  • Racaniello, V. R., & Baltimore, D. (1981a). Cloned poliovirus complementary DNA is infectious in mammalian cells. Science, 214(4523), 916–919.

    Article  CAS  PubMed  Google Scholar 

  • Racaniello, V. R., & Baltimore, D. (1981b). Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proceedings of the National Academy of Sciences of the United States of America, 78(8), 4887–4891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radestock, Y., Hoang-Vu, C., & Hombach-Klonisch, S. (2008). Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells. Breast Cancer Research: BCR, 10(4), R71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramesh, N., Ge, Y., Ennist, D. L., Zhu, M., Mina, M., Ganesh, S., Reddy, P. S., & Yu, D. C. (2006). CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor – Armed oncolytic adenovirus for the treatment of bladder cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(1), 305–313.

    Article  CAS  Google Scholar 

  • Randazzo, B. P., Kucharczuk, J. C., Litzky, L. A., Kaiser, L. R., Brown, S. M., MacLean, A., Albelda, S. M., & Fraser, N. W. (1996). Herpes simplex 1716 – An ICP 34.5 mutant – Is severely replication restricted in human skin xenografts in vivo. Virology, 223(2), 392–395.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P. S., Burroughs, K. D., Hales, L. M., Ganesh, S., Jones, B. H., Idamakanti, N., Hay, C., Li, S. S., Skele, K. L., Vasko, A. J., Yang, J., Watkins, D. N., Rudin, C. M., & Hallenbeck, P. L. (2007). Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. Journal of the National Cancer Institute, 99(21), 1623–1633.

    Article  CAS  PubMed  Google Scholar 

  • Reichard, K. W., Lorence, R. M., Cascino, C. J., Peeples, M. E., Walter, R. J., Fernando, M. B., Reyes, H. M., & Greager, J. A. (1992). Newcastle disease virus selectively kills human tumor cells. The Journal of Surgical Research, 52(5), 448–453.

    Article  CAS  PubMed  Google Scholar 

  • Restifo, N. P., Dudley, M. E., & Rosenberg, S. A. (2012). Adoptive immunotherapy for cancer: Harnessing the T cell response. Nature Reviews Immunology, 12(4), 269–281.

    Article  CAS  PubMed  Google Scholar 

  • Rock, K. L., Lai, J. J., & Kono, H. (2011). Innate and adaptive immune responses to cell death. Immunological Reviews, 243(1), 191–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roland, C. L., Lynn, K. D., Toombs, J. E., Dineen, S. P., Udugamasooriya, D. G., & Brekken, R. A. (2009). Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS ONE, 4(11), e7669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruotsalainen, J., Martikainen, M., Niittykoski, M., Huhtala, T., Aaltonen, T., Heikkila, J., Bell, J., Vaha-Koskela, M., & Hinkkanen, A. (2012). Interferon-beta sensitivity of tumor cells correlates with poor response to VA7 virotherapy in mouse glioma models. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(8), 1529–1539.

    Article  CAS  Google Scholar 

  • Ruotsalainen, J. J., Kaikkonen, M. U., Niittykoski, M., Martikainen, M. W., Lemay, C. G., Cox, J., De Silva, N. S., Kus, A., Falls, T. J., Diallo, J. S., Le Boeuf, F., Bell, J. C., Yla-Herttuala, S., Hinkkanen, A. E., & Vaha-Koskela, M. J. (2015). Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model. Gene Therapy, 22(1), 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Russell, S. J., & Peng, K. W. (2007). Viruses as anticancer drugs. Trends in Pharmacological Sciences, 28(7), 326–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, S. J., Peng, K. W., & Bell, J. C. (2012). Oncolytic virotherapy. Nature Biotechnology, 30(7), 658–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford, K. K., Earle, W. R., & Likely, G. D. (1948). The growth in vitro of single isolated tissue cells. Journal of the National Cancer Institute, 9(3), 229–246.

    CAS  PubMed  Google Scholar 

  • Senzer, N. N., Kaufman, H. L., Amatruda, T., Nemunaitis, M., Reid, T., Daniels, G., Gonzalez, R., Glaspy, J., Whitman, E., Harrington, K., Goldsweig, H., Marshall, T., Love, C., Coffin, R., & Nemunaitis, J. J. (2009). Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27(34), 5763–5771.

    Article  CAS  Google Scholar 

  • Shashkova, E. V., Kuppuswamy, M. N., Wold, W. S., & Doronin, K. (2008). Anticancer activity of oncolytic adenovirus vector armed with IFN-alpha and ADP is enhanced by pharmacologically controlled expression of TRAIL. Cancer Gene Therapy, 15(2), 61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan, C. (2015). IDO inhibitors move center stage in immuno-oncology. Nature Biotechnology, 33(4), 321–322.

    Article  CAS  PubMed  Google Scholar 

  • Shin, E. J., Wanna, G. B., Choi, B., Aguila, D., 3rd, Ebert, O., Genden, E. M., & Woo, S. L. (2007). Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. The Laryngoscope, 117(2), 210–214.

    Article  CAS  PubMed  Google Scholar 

  • Sinkovics, J. G. (1991). Viral oncolysates as human tumor vaccines. International Reviews of Immunology, 7(4), 259–287.

    Article  CAS  PubMed  Google Scholar 

  • Sinkovics, J. G., & Horvath, J. C. (2006). Evidence accumulating in support of cancer vaccines combined with chemotherapy: A pragmatic review of past and present efforts. International Journal of Oncology, 29(4), 765–777.

    CAS  PubMed  Google Scholar 

  • Skelding, K. A., Barry, R. D., & Shafren, D. R. (2012). Enhanced oncolysis mediated by Coxsackievirus A21 in combination with doxorubicin hydrochloride. Investigational New Drugs, 30(2), 568–581.

    Article  CAS  PubMed  Google Scholar 

  • Smakman, N., van der Bilt, J. D., van den Wollenberg, D. J., Hoeben, R. C., Borel Rinkes, I. H., & Kranenburg, O. (2006). Immunosuppression promotes reovirus therapy of colorectal liver metastases. Cancer Gene Therapy, 13(8), 815–818.

    Article  CAS  PubMed  Google Scholar 

  • Small, E. J., Carducci, M. A., Burke, J. M., Rodriguez, R., Fong, L., van Ummersen, L., Yu, D. C., Aimi, J., Ando, D., Working, P., Kirn, D., & Wilding, G. (2006). A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 14(1), 107–117.

    Article  CAS  Google Scholar 

  • Sobol, P. T., Boudreau, J. E., Stephenson, K., Wan, Y., Lichty, B. D., & Mossman, K. L. (2011). Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Molecular Therapy: The Journal of the American Society of Gene Therapy, 19(2), 335–344.

    Article  CAS  Google Scholar 

  • Southam, C. M. (1960). Present status of oncolytic virus studies. Transactions of the New York Academy of Sciences, 22, 657–673.

    Article  CAS  PubMed  Google Scholar 

  • Southam, C. M., & Moore, A. E. (1952). Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer, 5(5), 1025–1034.

    Article  CAS  PubMed  Google Scholar 

  • Sova, P., Ren, X. W., Ni, S., Bernt, K. M., Mi, J., Kiviat, N., & Lieber, A. (2004). A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Molecular Therapy: The Journal of the American Society of Gene Therapy, 9(4), 496–509.

    Article  CAS  Google Scholar 

  • Stanford, M. M., Barrett, J. W., Gilbert, P. A., Bankert, R., & McFadden, G. (2007). Myxoma virus expressing human interleukin-12 does not induce myxomatosis in European rabbits. Journal of Virology, 81(22), 12704–12708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson, K. B., Barra, N. G., Davies, E., Ashkar, A. A., & Lichty, B. D. (2012). Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Therapy, 19(4), 238–246.

    Article  CAS  PubMed  Google Scholar 

  • Stojdl, D. F., Lichty, B., Knowles, S., Marius, R., Atkins, H., Sonenberg, N., & Bell, J. C. (2000). Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Medicine, 6(7), 821–825.

    Article  CAS  PubMed  Google Scholar 

  • Stojdl, D. F., Lichty, B. D., tenOever, B. R., Paterson, J. M., Power, A. T., Knowles, S., Marius, R., Reynard, J., Poliquin, L., Atkins, H., Brown, E. G., Durbin, R. K., Durbin, J. E., Hiscott, J., & Bell, J. C. (2003). VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell, 4(4), 263–275.

    Article  CAS  PubMed  Google Scholar 

  • Su, C., Peng, L., Sham, J., Wang, X., Zhang, Q., Chua, D., Liu, C., Cui, Z., Xue, H., Wu, H., Yang, Q., Zhang, B., Liu, X., Wu, M., & Qian, Q. (2006). Immune gene-viral therapy with triplex efficacy mediated by oncolytic adenovirus carrying an interferon-gamma gene yields efficient antitumor activity in immunodeficient and immunocompetent mice. Molecular Therapy: The Journal of the American Society of Gene Therapy, 13(5), 918–927.

    Article  CAS  Google Scholar 

  • Suskind, R. G., Huebner, R. J., Rowe, W. P., & Love, R. (1957). Viral agents oncolytic for human tumors in heterologous host; oncolytic effect of Coxsackie B viruses. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 94(2), 309–318.

    Article  CAS  Google Scholar 

  • Takakuwa, H., Goshima, F., Nozawa, N., Yoshikawa, T., Kimata, H., Nakao, A., Nawa, A., Kurata, T., Sata, T., & Nishiyama, Y. (2003). Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice. Archives of Virology, 148(4), 813–825.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805–820.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., & Lotze, M. T. (2012). PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunological Reviews, 249(1), 158–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taqi, A. M., Abdurrahman, M. B., Yakubu, A. M., & Fleming, A. F. (1981). Regression of Hodgkin’s disease after measles. Lancet, 1(8229), 1112.

    Article  CAS  PubMed  Google Scholar 

  • Terada, K., Wakimoto, H., Tyminski, E., Chiocca, E. A., & Saeki, Y. (2006). Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models. Gene Therapy, 13(8), 705–714.

    Article  CAS  PubMed  Google Scholar 

  • Tesniere, A., Panaretakis, T., Kepp, O., Apetoh, L., Ghiringhelli, F., Zitvogel, L., & Kroemer, G. (2008). Molecular characteristics of immunogenic cancer cell death. Cell Death and Differentiation, 15(1), 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Todo, T., Martuza, R. L., Dallman, M. J., & Rabkin, S. D. (2001). In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Research, 61(1), 153–161.

    CAS  PubMed  Google Scholar 

  • Tomita, K., Sakurai, F., Tachibana, M., & Mizuguchi, H. (2012). Correlation between adenovirus-neutralizing antibody titer and adenovirus vector-mediated transduction efficiency following intratumoral injection. Anticancer Research, 32(4), 1145–1152.

    CAS  PubMed  Google Scholar 

  • Tong, Y., Zhu, W., Huang, X., You, L., Han, X., Yang, C., & Qian, W. (2014). PI3K inhibitor LY294002 inhibits activation of the Akt/mTOR pathway induced by an oncolytic adenovirus expressing TRAIL and sensitizes multiple myeloma cells to the oncolytic virus. Oncology Reports, 31(4), 1581–1588.

    CAS  PubMed  Google Scholar 

  • Touchefeu, Y., Vassaux, G., & Harrington, K. J. (2011). Oncolytic viruses in radiation oncology. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 99(3), 262–270.

    Article  CAS  Google Scholar 

  • Tsai, Y. S., Shiau, A. L., Chen, Y. F., Tsai, H. T., Tzai, T. S., & Wu, C. L. (2010). Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: A promising strategy for bladder cancer therapy. Cancer Gene Therapy, 17(1), 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Vacchelli, E., Eggermont, A., Sautes-Fridman, C., Galon, J., Zitvogel, L., Kroemer, G., & Galluzzi, L. (2013). Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology, 2(6), e24612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaha-Koskela, M. J., Le Boeuf, F., Lemay, C., De Silva, N., Diallo, J. S., Cox, J., Becker, M., Choi, Y., Ananth, A., Sellers, C., Breton, S., Roy, D., Falls, T., Brun, J., Hemminki, A., Hinkkanen, A., & Bell, J. C. (2013). Resistance to two heterologous neurotropic oncolytic viruses, Semliki Forest virus and vaccinia virus, in experimental glioma. Journal of Virology, 87(4), 2363–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Elsas, A., Hurwitz, A. A., & Allison, J. P. (1999). Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. The Journal of Experimental Medicine, 190(3), 355–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Rikxoort, M., Michaelis, M., Wolschek, M., Muster, T., Egorov, A., Seipelt, J., Doerr, H. W., & Cinatl, J., Jr. (2012). Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS ONE, 7(5), e36506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varghese, S., Rabkin, S. D., Liu, R., Nielsen, P. G., Ipe, T., & Martuza, R. L. (2006). Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Therapy, 13(3), 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Vigil, A., Park, M. S., Martinez, O., Chua, M. A., Xiao, S., Cros, J. F., Martinez-Sobrido, L., Woo, S. L., & Garcia-Sastre, A. (2007). Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus. Cancer Research, 67(17), 8285–8292.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., Martin, F., Apetoh, L., Rebe, C., & Ghiringhelli, F. (2010). 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Research, 70(8), 3052–3061.

    Article  CAS  PubMed  Google Scholar 

  • Wakimoto, H., Fulci, G., Tyminski, E., & Chiocca, E. A. (2004). Altered expression of antiviral cytokine mRNAs associated with cyclophosphamide’s enhancement of viral oncolysis. Gene Therapy, 11(2), 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. G., Zhao, W., Ramachandra, M., & Seth, P. (2006). An oncolytic adenovirus expressing soluble transforming growth factor-beta type II receptor for targeting breast cancer: In vitro evaluation. Molecular Cancer Therapeutics, 5(2), 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. C., Lynn, R. C., Cheng, G., Alexander, E., Kapoor, V., Moon, E. K., Sun, J., Fridlender, Z. G., Isaacs, S. N., Thorne, S. H., & Albelda, S. M. (2012). Treating tumors with a vaccinia virus expressing IFNbeta illustrates the complex relationships between oncolytic ability and immunogenicity. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(4), 736–748.

    Article  CAS  Google Scholar 

  • Washburn, B., & Schirrmacher, V. (2002). Human tumor cell infection by Newcastle Disease Virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. International Journal of Oncology, 21(1), 85–93.

    CAS  PubMed  Google Scholar 

  • Webb, H. E., & Smith, C. E. (1970). Viruses in the treatment of cancer. Lancet, 1(7658), 1206–1208.

    Article  CAS  PubMed  Google Scholar 

  • Weller, T. H., Robbins, F. C., & Enders, J. F. (1949). Cultivation of poliomyelitis virus in cultures of human foreskin and embryonic tissues. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, 72(1), 153–155.

    Article  CAS  Google Scholar 

  • Weng, M., Gong, W., Ma, M., Chu, B., Qin, Y., Zhang, M., Lun, X., McFadden, G., Forsyth, P., Yang, Y., & Quan, Z. (2014). Targeting gallbladder cancer: Oncolytic virotherapy with myxoma virus is enhanced by rapamycin in vitro and further improved by hyaluronan in vivo. Molecular Cancer, 13, 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wennier, S. T., Liu, J., & McFadden, G. (2012). Bugs and drugs: Oncolytic virotherapy in combination with chemotherapy. Current Pharmaceutical Biotechnology, 13(9), 1817–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmon, C. L., Saloura, V., Fridlender, Z. G., Wongthida, P., Diaz, R. M., Thompson, J., Kottke, T., Federspiel, M., Barber, G., Albelda, S. M., & Vile, R. G. (2009). Expression of IFN-beta enhances both efficacy and safety of oncolytic vesicular stomatitis virus for therapy of mesothelioma. Cancer Research, 69(19), 7713–7720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlfahrt, M. E., Beard, B. C., Lieber, A., & Kiem, H. P. (2007). A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL Leads to enhanced cancer cell killing in human glioblastoma models. Cancer Research, 67(18), 8783–8790.

    Article  CAS  PubMed  Google Scholar 

  • Wongthida, P., Diaz, R. M., Galivo, F., Kottke, T., Thompson, J., Pulido, J., Pavelko, K., Pease, L., Melcher, A., & Vile, R. (2010). Type III IFN interleukin-28 mediates the antitumor efficacy of oncolytic virus VSV in immune-competent mouse models of cancer. Cancer Research, 70(11), 4539–4549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workenhe, S. T., Pol, J. G., Lichty, B. D., Cummings, D. T., & Mossman, K. L. (2013). Combining oncolytic HSV-1 with immunogenic cell death-inducing drug mitoxantrone breaks cancer immune tolerance and improves therapeutic efficacy. Cancer Immunology Research, 1(5), 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Workenhe, S. T., Simmons, G., Pol, J. G., Lichty, B. D., Halford, W. P., & Mossman, K. L. (2014). Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy. Molecular Therapy: The Journal of the American Society of Gene Therapy, 22(1), 123–131.

    Article  CAS  Google Scholar 

  • Wuest, T. R., & Carr, D. J. (2010). VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. The Journal of Experimental Medicine, 207(1), 101–115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuest, T., Zheng, M., Efstathiou, S., Halford, W. P., & Carr, D. J. (2011). The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization. PLoS Pathogens, 7(10), e1002278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, Z. J., Chang, J. H., Zhang, L., Jiang, W. Q., Guan, Z. Z., Liu, J. W., Zhang, Y., Hu, X. H., Wu, G. H., Wang, H. Q., Chen, Z. C., Chen, J. C., Zhou, Q. H., Lu, J. W., Fan, Q. X., Huang, J. J., & Zheng, X. (2004). Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai zheng = Aizheng = Chinese Journal of Cancer, 23(12), 1666–1670.

    PubMed  Google Scholar 

  • Xu, R. H., Yuan, Z. Y., Guan, Z. Z., Cao, Y., Wang, H. Q., Hu, X. H., Feng, J. F., Zhang, Y., Li, F., Chen, Z. T., Wang, J. J., Huang, J. J., Zhou, Q. H., & Song, S. T. (2003). Phase II clinical study of intratumoral H101, an E1B deleted adenovirus, in combination with chemotherapy in patients with cancer. Ai zheng = Aizheng = Chinese Journal of Cancer, 22(12), 1307–1310.

    PubMed  Google Scholar 

  • Yaacov, B., Eliahoo, E., Lazar, I., Ben-Shlomo, M., Greenbaum, I., Panet, A., & Zakay-Rones, Z. (2008). Selective oncolytic effect of an attenuated Newcastle disease virus (NDV-HUJ) in lung tumors. Cancer Gene Therapy, 15(12), 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y., Li, S., Jia, T., Du, X., Xu, Y., Zhao, Y., Li, L., Liang, K., Liang, W., Sun, H., & Li, R. (2015). Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 36(6), 4535–4543.

    Article  CAS  Google Scholar 

  • Yang, Y. F., Xue, S. Y., Lu, Z. Z., Xiao, F. J., Yin, Y., Zhang, Q. W., Wu, C. T., Wang, H., & Wang, L. S. (2014). Antitumor effects of oncolytic adenovirus armed with PSA-IZ-CD40L fusion gene against prostate cancer. Gene Therapy, 21(8), 723–731.

    Article  CAS  PubMed  Google Scholar 

  • Ye, X., Lu, Q., Zhao, Y., Ren, Z., Ren, X. W., Qiu, Q. H., Tong, Y., Liang, M., Hu, F., & Chen, H. Z. (2005). Conditionally replicative adenovirus vector carrying TRAIL gene for enhanced oncolysis of human hepatocellular carcinoma. International Journal of Molecular Medicine, 16(6), 1179–1184.

    CAS  PubMed  Google Scholar 

  • Yohn, D. S., Hammon, W. M., Atchison, R. W., & Casto, B. C. (1968). Oncolytic potentials of nonhuman viruses for human cancer. II. Effects of five viruses on heterotransplantable human tumors. Journal of the National Cancer Institute, 41(2), 523–529.

    CAS  PubMed  Google Scholar 

  • Yoo, J. Y., Ryu, J., Gao, R., Yaguchi, T., Kaul, S. C., Wadhwa, R., & Yun, C. O. (2010). Tumor suppression by apoptotic and anti-angiogenic effects of mortalin-targeting adeno-oncolytic virus. The Journal of Gene Medicine, 12(7), 586–595.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W., & Fang, H. (2007). Clinical trials with oncolytic adenovirus in China. Current Cancer Drug Targets, 7(2), 141–148.

    Article  PubMed  Google Scholar 

  • Yu, D. C., Chen, Y., Dilley, J., Li, Y., Embry, M., Zhang, H., Nguyen, N., Amin, P., Oh, J., & Henderson, D. R. (2001). Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Research, 61(2), 517–525.

    CAS  PubMed  Google Scholar 

  • Yu, F., Wang, X., Guo, Z. S., Bartlett, D. L., Gottschalk, S. M., & Song, X. T. (2014). T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Molecular Therapy: The Journal of the American Society of Gene Therapy, 22(1), 102–111.

    Article  CAS  Google Scholar 

  • Yuan, Z. Y., Zhang, L., Li, S., Qian, X. Z., & Guan, Z. Z. (2003). Safety of an E1B deleted adenovirus administered intratumorally to patients with cancer. Ai zheng = Aizheng = Chinese journal of cancer, 22(3), 310–313.

    PubMed  Google Scholar 

  • Zamarin, D., Martinez-Sobrido, L., Kelly, K., Mansour, M., Sheng, G., Vigil, A., Garcia-Sastre, A., Palese, P., & Fong, Y. (2009a). Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Molecular Therapy: The Journal of the American Society of Gene Therapy, 17(4), 697–706.

    Article  CAS  Google Scholar 

  • Zamarin, D., Vigil, A., Kelly, K., Garcia-Sastre, A., & Fong, Y. (2009b). Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Therapy, 16(6), 796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamarin, D., Holmgaard, R. B., Subudhi, S. K., Park, J. S., Mansour, M., Palese, P., Merghoub, T., Wolchok, J. D., & Allison, J. P. (2014). Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Science Translational Medicine, 6(226), 226ra232.

    Article  CAS  Google Scholar 

  • Zhang, W. W., Alemany, R., Wang, J., Koch, P. E., Ordonez, N. G., & Roth, J. A. (1995). Safety evaluation of Ad5CMV-p53 in vitro and in vivo. Human Gene Therapy, 6(2), 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Ramesh, N., Chen, Y., Li, Y., Dilley, J., Working, P., & Yu, D. C. (2002). Identification of human uroplakin II promoter and its use in the construction of CG8840, a urothelium-specific adenovirus variant that eliminates established bladder tumors in combination with docetaxel. Cancer Research, 62(13), 3743–3750.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Dermawan, K., Jin, M., Liu, R., Zheng, H., Xu, L., Zhang, Y., Cai, Y., Chu, Y., & Xiong, S. (2008). Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clinical Immunology, 129(2), 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Liang, C., Yu, Y. A., Chen, N., Dandekar, T., & Szalay, A. A. (2009). The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: Comparative genomic features and the contribution of F14.5L inactivation. Molecular Genetics and Genomics: MGG, 282(4), 417–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Hu, Z., Gupta, J., Krimmel, J. D., Gerseny, H. M., Berg, A. F., Robbins, J. S., Du, H., Prabhakar, B., & Seth, P. (2012). Intravenous administration of adenoviruses targeting transforming growth factor beta signaling inhibits established bone metastases in 4T1 mouse mammary tumor model in an immunocompetent syngeneic host. Cancer Gene Therapy, 19(9), 630–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Fulci, G., Wakimoto, H., Cheema, T. A., Buhrman, J. S., Jeyaretna, D. S., Stemmer Rachamimov, A. O., Rabkin, S. D., & Martuza, R. L. (2013). Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia, 15(6), 591–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Ge, K., Zhao, Q., Zhuang, X., Deng, Z., Liu, L., Li, J., Zhang, Y., Dong, Y., Zhang, Y., Zhang, S., & Liu, B. (2015). A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget, 6(24), 20345–20355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Janke, M., Fournier, P., & Schirrmacher, V. (2008). Recombinant Newcastle disease virus expressing human interleukin-2 serves as a potential candidate for tumor therapy. Virus Research, 136(1–2), 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Q., Zhang, W., Ning, Z., Zhuang, X., Lu, H., Liang, J., Li, J., Zhang, Y., Dong, Y., Zhang, Y., Zhang, S., Liu, S., & Liu, B. (2014). A novel oncolytic herpes simplex virus type 2 has potent anti-tumor activity. PLoS ONE, 9(3), e93103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, J. N., Pei, D. S., Sun, F. H., Liu, X. Y., Mao, L. J., Zhang, B. F., Wen, R. M., Xu, W., Shi, Z., Liu, J. J., & Li, W. (2009). Potent antitumor efficacy of interleukin-18 delivered by conditionally replicative adenovirus vector in renal cell carcinoma-bearing nude mice via inhibition of angiogenesis. Cancer Biology & Therapy, 8(7), 599–606.

    Article  CAS  Google Scholar 

  • Zhu, W., Zhang, H., Shi, Y., Song, M., Zhu, B., & Wei, L. (2013). Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biology & Therapy, 14(11), 1016–1023.

    Article  CAS  Google Scholar 

  • Zhuang, X., Zhang, W., Chen, Y., Han, X., Li, J., Zhang, Y., Zhang, Y., Zhang, S., & Liu, B. (2012). Doxorubicin-enriched, ALDH(br) mouse breast cancer stem cells are treatable to oncolytic herpes simplex virus type 1. BMC Cancer, 12, 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zygiert, Z. (1971). Hodgkin’s disease: Remissions after measles. Lancet, 1(7699), 593.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tsun, A., Miao, X.N., Wang, C.M., Yu, D.C. (2016). Oncolytic Immunotherapy for Treatment of Cancer. In: Zhang, S. (eds) Progress in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, vol 909. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7555-7_5

Download citation

Publish with us

Policies and ethics