Targeted Metabolomics: The Next Generation of Clinical Chemistry!

  • Klaus M. WeinbergerEmail author
  • Marc Breit
Part of the Translational Bioinformatics book series (TRBIO, volume 11)


Targeted metabolomics, i.e. the quantitation of predefined sets of endogenous metabolites selected for their relevance in metabolism, has emerged as a new and particularly informative discipline in functional genomics although its roots in diagnosing inborn disorders of metabolism in neonates go back much further than those of genomics or proteomics. Because of its unique capabilities in depicting actual physiological and pathophysiological conditions instead of just predispositions or risk factors, it seems ideally suited for complementing the currently established diagnostic platform technologies (enzyme assays, ion-selective electrodes, immunoassays, and molecular diagnostics) in a synergistic fashion. Of course, both technical and content-related prerequisites have to be met before a new technology can make any inroads in clinical practice and, so, this chapter discusses the development of metabolomics since the early twentieth century, the renaissance of clinical biochemistry in areas like neonatal screening and oncology, the most promising new indications, in which diagnostically relevant metabolic biomarker signatures have been identified and – partly – also validated and, eventually, selected risks and opportunities that have to be kept in mind when trying to promote this area of research and development. Bottom line: there is substantial reason to believe that targeted metabolomics can be the new platform technology in clinical chemistry if the community succeeds in taking advantage of the obvious strengths of this discipline and in avoiding some of the pitfalls that have hindered clinical acceptance for other varieties of functional genomics.


Clinical chemistry Targeted metabolomics Multiparametric biomarkers Chemometrics Biochemical interpretation 



aromatic amino acids


Alzheimer’s disease


age-related macular degeneration


area under the curve


branched-chain amino acids


chronic kidney disease


central nervous system


chronic obstructive pulmonary disease


coefficient of variation


dried blood spots


diabetic nephropathy


deoxyribonucleic acid


design of experiments


Epstein-Barr virus


enzyme-linked immunosorbent assays


European Medicines Agency


Food and Drug Administration


fluorescence resonance energy transfer


Gene Ontology


genome-wide association studies


hepatitis C virus


high-density lipoprotein


health technology assessment


intellectual property


in vitro diagnostics


Kyoto Encyclopedia of Genes and Genomes


low-density lipoprotein


laboratory information management system


metabolite set enrichment analyses


M2 isoform of pyruvate kinase


newborn screening


next-generation sequencing


nuclear magnetic resonance


principle components analysis


polymerase chain reaction




partial least squares discriminant analysis


positive predictive value


predictive, preventive, personalized, and participatory




ribonucleic acid


receiver operating characteristics


relative standard deviation


Region 4 Stork


standard addition method


stable isotope dilution


single molecule real-time


support vector machine


traditional chinese medicine


therapeutic drug monitoring


type II diabetes


Zucker diabetic fatty


  1. Abdel-Halim RES. The role of Ibn Sina (Avicenna)’s medical poem in the transmission of medical knowledge to medieval Europe. Urol Ann. 2014;6(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abela L, Simmons L, Steindl K, Schmitt B, Mastrangelo M, Joset P, et al. N(8)-acetylspermidine as a potential plasma biomarker for Snyder-Robinson syndrome identified by clinical metabolomics. J Inherit Metab Dis. 2016;39(1):131–7. doi: 10.1007/s10545-015-9876-y. Epub 2015 Jul 15.PubMedCrossRefGoogle Scholar
  3. Aichler M, Luber B, Lordick F, Walch A. Proteomic and metabolic prediction of response to therapy in gastric cancer. World J Gastroenterol. 2014;20(38):13648–57. doi: 10.3748/wjg.v20.i38.13648. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Altmaier E, Ramsay SL, Graber A, Mewes HW, Weinberger KM, Suhre K. Bioinformatics analysis of targeted metabolomics--uncovering old and new tales of diabetic mice under medication. Endocrinology. 2008;149(7):3478–89. doi: 10.1210/en.2007-1747. Epub 2008 Mar 27.PubMedCrossRefGoogle Scholar
  5. Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977;74(12):5350–4.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anton G, Wilson R, Yu ZH, Prehn C, Zukunft S, Adamski J, et al. Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS One. 2015;10(3):e0121495. doi: 10.1371/journal.pone.0121495.eCollection2015.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 1944;79(2):137–58.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barba I, Fernandez-Montesinos R, Garcia-Dorado D, Pozo D. Alzheimer’s disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. J Cell Mol Med. 2008;12(5A):1477–85. doi: 10.1111/j.1582-4934.2008.00385.x. Epub 2008 June 28. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baumgartner C, Böhm C, Baumgartner D, Marini G, Weinberger K, Olgemöller B, Liebl B, Roscher AA. Supervised machine learning techniques for the classification of metabolic disorders in newborns. Bioinformatics. 2004;20(17):2985–96. Epub 2004 June 4.PubMedCrossRefGoogle Scholar
  10. Beadle GW, Tatum EL. Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci U S A. 1941;27(11):499–506.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Begbie JW. Hippocrates: his life and writings. Br Med J. 1872;2(626):709–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9. doi: 10.1038/nature07517.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berm EJ, Hak E, Postma M, Boshuisen M, Breuning L, Brouwers JR, et al. Effects and cost-effectiveness of pharmacogenetic screening for CYP2D6 among older adults starting therapy with nortriptyline or venlafaxine: study protocol for a pragmatic randomized controlled trial (CYSCEtrial). Trials. 2015;16:37. doi: 10.1186/s13063-015-0561-0.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bezabeh T, Ijare OB, Nikulin AE, Somorjai RL, Smith IC. MRS-based metabolomics in cancer research. Magn Reson Insights. 2014;7:1–14. doi: 10.4137/MRI.S13755.eCollection2014. Review.PubMedPubMedCentralGoogle Scholar
  15. Biemann K. Laying the groundwork for proteomics: mass spectrometry from 1958 to 1988. J Proteomics. 2014;107:62–70. doi: 10.1016/j.jprot.2014.01.008. Epub 2014 Jan 18. Review.PubMedCrossRefGoogle Scholar
  16. Biemann K, Cone C, Webster BR, Arsenault GP. Determination of the amino acid sequence in oligopeptides by computer interpretation of their high-resolution mass spectra. J Am Chem Soc. 1966;88(23):5598–606.PubMedCrossRefGoogle Scholar
  17. Bihl F, Castelli D, Marincola F, Dodd RY, Brander C. Transfusion-transmitted infections. J Transl Med. 2007;5:25.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blasiak J, Petrovski G, Veréb Z, Facskó A, Kaarniranta K. Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int. 2014;2014:768026. doi: 10.1155/2014/768026. Epub 2014 Feb 23.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:91. doi: 10.3389/fnana.2015.00091.eCollection2015. Review.PubMedPubMedCentralGoogle Scholar
  20. Blomstedt P. Imhotep and the discovery of cerebrospinal fluid. Anat Res Int. 2014;2014:256105. doi: 10.1155/2014/256105. Epub 2014 Mar 13.PubMedPubMedCentralGoogle Scholar
  21. Boudonck KJ, Mitchell MW, Német L, Keresztes L, Nyska A, Shinar D, Rosenstock M. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol Pathol. 2009a;37(3):280–92. doi: 10.1177/0192623309332992.PubMedCrossRefGoogle Scholar
  22. Boudonck KJ, Rose DJ, Karoly ED, Lee DP, Lawton KA, Lapinskas PJ. Metabolomics for early detection of drug-induced kidney injury: review of the current status. Bioanalysis. 2009b;1(9):1645–63. doi: 10.4155/bio.09.142. Review.PubMedCrossRefGoogle Scholar
  23. Breier M, Wahl S, Prehn C, Fugmann M, Ferrari U, Weise M, et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One. 2014;9(2):e89728. doi: 10.1371/journal.pone.0089728.eCollection2014.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys. 2016;589:62–80. doi: 10.1016/ Epub 2015 Jul 31.PubMedCrossRefGoogle Scholar
  25. Breit M, Baumgartner C, Weinberger KM. Data handling and analysis in metabolomics. In: Khanmohammadi M, editor. Current applications of chemometrics. New York: Nova; 2015. p. 181–203.Google Scholar
  26. Cassol S, Salas T, Gill MJ, Montpetit M, Rudnik J, Sy CT, O’Shaughnessy MV. Stability of dried blood spot specimens for detection of human immunodeficiency virus DNA by polymerase chain reaction. J Clin Microbiol. 1992;30(12):3039–42.PubMedPubMedCentralGoogle Scholar
  27. Ceglarek U, Lembcke J, Fiedler GM, Werner M, Witzigmann H, Hauss JP, Thiery J. Rapid simultaneous quantification of immunosuppressants in transplant patients by turbulent flow chromatography combined with tandem mass spectrometry. Clin Chim Acta. 2004;346(2):181–90.PubMedCrossRefGoogle Scholar
  28. Ceglarek U, Casetta B, Lembcke J, Baumann S, Fiedler GM, Thiery J. Inclusion of MPA and in a rapid multi-drug LC-tandem mass spectrometric method for simultaneous determination of immunosuppressants. Clin Chim Acta. 2006;373(1–2):168–71. Epub 2006 May 17.PubMedCrossRefGoogle Scholar
  29. Chace DH. Mass spectrometry in the clinical laboratory. Chem Rev. 2001;101(2):445–77. Review.PubMedCrossRefGoogle Scholar
  30. Chace DH, Millington DS, Terada N, Kahler SG, Roe CR, Hofman LF. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem. 1993;39(1):66–71.PubMedGoogle Scholar
  31. Chace DH, Sherwin JE, Hillman SL, Lorey F, Cunningham GC. Use of phenylalanine-to-tyrosine ratio determined by tandem mass spectrometry to improve newborn screening for phenylketonuria of early discharge specimens collected in the first 24 hours. Clin Chem. 1998;44(12):2405–9.PubMedGoogle Scholar
  32. Chace DH, Kalas TA, Naylor EW. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genomics Hum Genet. 2002;3:17–45. Epub 2002 Apr 15. Review.PubMedCrossRefGoogle Scholar
  33. Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49(11):1797–817.PubMedCrossRefGoogle Scholar
  34. Chargaff E, Magasanik B, Vischer E, Green C, Doniger R, Elson D. Nucleotide composition of pentose nucleic acids from yeast and mammalian tissues. J Biol Chem. 1950;186(1):51–67.PubMedGoogle Scholar
  35. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK. The origin of the Haitian cholera outbreak strain. N Engl J Med. 2011;364(1):33–42. doi: 10.1056/NEJMoa1012928. Epub 2010 Dec 9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Choopani R, Emtiazy M. The concept of lifestyle factors, based on the teaching of avicenna (ibn sina). Int J Prev Med. 2015;6:30. doi: 10.4103/2008-7802.154772.eCollection2015.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008a;452(7184):181–6. doi: 10.1038/nature06667.PubMedCrossRefGoogle Scholar
  38. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008b;452(7184):230–3. doi: 10.1038/nature06734.PubMedCrossRefGoogle Scholar
  39. Coppedè F, Migliore L. DNA damage in neurodegenerative diseases. Mutat Res. 2015;776:84–97. doi: 10.1016/j.mrfmmm.2014.11.010. Epub 2014 Dec 9. Review.PubMedCrossRefGoogle Scholar
  40. Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.PubMedCrossRefGoogle Scholar
  41. Crick F. Ideas on protein synthesis. Francis Harry Compton Crick Papers. Wellcome Library for the History and Understanding of Medicine. 1956 [cited 2015 Sep 1]. Available from:
  42. Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins. Nature. 1961;192:1227–32.PubMedCrossRefGoogle Scholar
  43. Crowgey EL, Kolb A, Wu CH. Development of bioinformatics pipeline for analyzing clinical pediatric NGS data. AMIA Jt Summits Transl Sci Proc. 2015;2015:207–11. eCollection 2015.PubMedPubMedCentralGoogle Scholar
  44. Cunha F. The Edwin Smith surgical papyrus. Am J Surg. 1949;78(2):277.PubMedCrossRefGoogle Scholar
  45. Dahm R. Friedrich Miescher and the discovery of DNA. Dev Biol. 2005;278(2):274–88. Review.PubMedCrossRefGoogle Scholar
  46. Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 2010;9(19):3884–6. Epub 2010 Oct 9.PubMedCrossRefGoogle Scholar
  47. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. doi: 10.1038/nature08617.PubMedPubMedCentralCrossRefGoogle Scholar
  48. de Brevern AG, Meyniel JP, Fairhead C, Neuvéglise C, Malpertuy A. Trends in IT innovation to build a next generation bioinformatics solution to manage and analyse biological big data produced by NGS Technologies. Biomed Res Int. 2015;2015:904541. doi: 10.1155/2015/904541. Epub 2015 June 1.PubMedPubMedCentralCrossRefGoogle Scholar
  49. De Ritis F, Coltorti M, Giusti G. Transaminase activity of the blood in viral hepatitis. Boll Soc Ital Biol Sper. 1955;31(5):394–6. Italian.Google Scholar
  50. De Ritis F, Coltorti M, Giusti G. Serum and liver transaminase activities in experimental virus hepatitis in mice. Science. 1956;124(3210):32.CrossRefGoogle Scholar
  51. De Ritis F, Coltorti M, Giusti G. An enzymic test for the diagnosis of viral hepatitis; the transaminase serum activities. Clin Chim Acta. 1957;2(1):70–4.CrossRefGoogle Scholar
  52. Deguchi H, Banerjee Y, Trauger S, Siuzdak G, Kalisiak E, Fernández JA, et al. Acylcarnitines are anticoagulants that inhibit factor Xa and are reduced in venous thrombosis, based on metabolomics data. Blood. 2015;126(13):1595–600. doi: 10.1182/blood-2015-03-636761. Epub 2015 Jul 14.PubMedCrossRefGoogle Scholar
  53. Domej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD–implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis. 2014;9:1207–24. doi: 10.2147/COPD.S51226.eCollection2014.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Draisma HH, Pool R, Kobl M, Jansen R, Petersen AK, Vaarhorst AA, et al. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat Commun. 2015;6:7208. doi: 10.1038/ncomms8208.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Duranton F, Lundin U, Gayrard N, Mischak H, Aparicio M, Mourad G, et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin J Am Soc Nephrol. 2014;9(1):37–45.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Edman P. Method for determination of the amino acid sequence in peptides. Acta Chem Scand. 1950;4(7):283–93.CrossRefGoogle Scholar
  57. Edman P, Begg G. A protein sequenator. Eur J Biochem. 1967;1(1):80–91.PubMedCrossRefGoogle Scholar
  58. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8.PubMedCrossRefGoogle Scholar
  59. Eigenbrodt E, Mostafa MA, Schoner W. Inactivation of pyruvate kinase type M2 from chicken liver by phosphorylation, catalyzed by a cAMP-independent protein kinase. Hoppe Seylers Z Physiol Chem. 1977;358(8):1047–55.PubMedCrossRefGoogle Scholar
  60. Eigenbrodt E, Leib S, Kramer W, Friis RR, Schoner W. Structural and kinetic differences between the M2 type pyruvate kinases from lung and various tumors. Biomed Biochim Acta. 1983;42(11–12):S278–82.PubMedGoogle Scholar
  61. Eigenbrodt E, Basenau D, Holthusen S, Mazurek S, Fischer G. Quantification of tumor type M2 pyruvate kinase (Tu M2-PK) in human carcinomas. Anticancer Res. 1997;17(4B):3153–6.PubMedGoogle Scholar
  62. Eigenbrodt E, Kallinowski F, Ott M, Mazurek S, Vaupel P. Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors. Anticancer Res. 1998;18(5A):3267–74.PubMedGoogle Scholar
  63. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry. 1971;8(9):871–4.PubMedCrossRefGoogle Scholar
  64. Enot DP, Haas B, Weinberger KM. Bioinformatics for mass spectrometry-based metabolomics. Methods Mol Biol. 2011;719:351–75.PubMedCrossRefGoogle Scholar
  65. Fahrmann JF, Kim K, DeFelice BC, Taylor SL, Gandara DR, Yoneda KY, et al. Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung cancer. Cancer Epidemiol Biomarkers Prev. 2015;24(11):1716–23. doi: 10.1158/1055-9965.EPI-15-0427. Epub 2015 Aug 17.PubMedCrossRefGoogle Scholar
  66. Fales FM. Chapter 2: mesopotamia. Handb Clin Neurol. 2010;95:15–27. doi: 10.1016/S0072-9752(08)02102-7.PubMedCrossRefGoogle Scholar
  67. Falick AM, Hines WM, Medzihradszky KF, Baldwin MA, Gibson BW. Low-mass ions produced from peptides by high-energy collision-induced dissociation in tandem mass spectrometry. J Am Soc Mass Spectrom. 1993;4(11):882–93. doi: 10.1016/1044-0305(93)87006-X.PubMedCrossRefGoogle Scholar
  68. Fingerhut R, Röschinger W, Muntau AC, Dame T, Kreischer J, Arnecke R, Superti-Furga A, Troxler H, Liebl B, Olgemöller B, Roscher AA. Hepatic carnitine palmitoyltransferase I deficiency: acylcarnitine profiles in blood spots are highly specific. Clin Chem. 2001;47(10):1763–8.PubMedGoogle Scholar
  69. Fishman JA, Rubin RH. Infection in organ-transplant recipients. N Engl J Med. 1998;338(24):1741–51. Review.PubMedCrossRefGoogle Scholar
  70. Flaveny CA, Griffett K, El-Gendy Bel D, Kazantzis M, Sengupta M, Amelio AL. Broad anti-tumor activity of a small molecule that selectively targets the Warburg effect and lipogenesis. Cancer Cell. 2015;28(1):42–56. doi: 10.1016/j.ccell.2015.05.007. Epub 2015 June 25.PubMedCrossRefGoogle Scholar
  71. Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–48.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Floegel A, Wientzek A, Bachlechner U, Jacobs S, Drogan D, Prehn C, et al. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study. Int J Obes (Lond). 2014;38(11):1388–96. doi: 10.1038/ijo.2014.39. Epub 2014 Mar 10.CrossRefGoogle Scholar
  73. Franklin RE, Gosling RG. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature. 1953;172(4369):156–7.PubMedCrossRefGoogle Scholar
  74. Furey WS, Joyce CM, Osborne MA, Klenerman D, Peliska JA, Balasubramanian S. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry. 1998;37(9):2979–90.PubMedCrossRefGoogle Scholar
  75. Gamow G, Ycas M. Statistical correlation of protein and ribonucleic acid composition. Proc Natl Acad Sci U S A. 1955;41(12):1011–19.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gamow G, Rich A, Ycas M. The problem of information transfer from the nucleic acids to proteins. Adv Biol Med Phys. 1956;4:23–68.PubMedCrossRefGoogle Scholar
  77. Garrod AE. Alkaptonuria: a simple method for the extraction of homogentisinic acid from the urine. J Physiol. 1899;23(6):512–14.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Garrod A. The incidence of alkaptonuria: a study in chemical individuality. Lancet. 1902;160(4137):1616–20.CrossRefGoogle Scholar
  79. Garrod A. The croonian lectures on inborn errors of metabolism. Lancet. 1908;172(4427):1–7.CrossRefGoogle Scholar
  80. Garrod AE. Where chemistry and medicine meet. Br Med J. 1911;1(2633):1413.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Garrod AE, Hurtley WH. On the estimation of homogentisic acid in urine by the method of wolkow and Baumann. J Physiol. 1905;33(3):206–10.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Garrod AE, Hurtley WH. Concerning cystinuria. J Physiol. 1906;34(3):217–23.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T, et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4(11):e1000282.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Giesbertz P, Padberg I, Rein D, Ecker J, Höfle AS, Spanier B, Daniel H. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes. Diabetologia. 2015;58(9):2133–43. doi: 10.1007/s00125-015-3656-y. Epub 2015 June 10.PubMedCrossRefGoogle Scholar
  85. Goek ON, Döring A, Gieger C, Heier M, Koenig W, Prehn C, et al. Serum metabolite concentrations and decreased GFR in the general population. Am J Kidney Dis. 2012;60(2):197–206.PubMedCrossRefGoogle Scholar
  86. Goek ON, Prehn C, Sekula P, Römisch-Margl W, Döring A, Gieger C, et al. Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrol Dial Transplant. 2013;28(8):2131–8.PubMedCrossRefGoogle Scholar
  87. Gotto Jr AM. Cholesterol management in theory and practice. Circulation. 1997;96(12):4424–30. Review.PubMedCrossRefGoogle Scholar
  88. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010;328(5979):710–22.PubMedCrossRefGoogle Scholar
  89. Griffith F. The significance of pneumococcal types. J Hyg (Lond). 1928;27(2):113–59.CrossRefGoogle Scholar
  90. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med. 2010;207(2):339–44. doi: 10.1084/jem.20092506. Epub 2010 Feb 8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gruber AC, Lundin U, Dzien A, Weinberger KM. From hyperphagic rodents to diabetic complications: targeted metabolomics in preclinical and clinical diabetology. J Comput Sci Syst Biol. 2012;5:1. Scholar
  92. Guleria A, Misra DP, Rawat A, Dubey D, Khetrapal CL, Bacon P, et al. NMR-based serum metabolomics discriminates Takayasu Arteritis from healthy individuals: a proof-of-principle study. J Proteome Res. 2015;14(8):3372–81. doi: 10.1021/acs.jproteome.5b00422. Epub 2015 June 29.PubMedCrossRefGoogle Scholar
  93. Guthrie R. Screening for phenylketonuria. Triangle. 1969;9(3):104–9.PubMedGoogle Scholar
  94. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.PubMedGoogle Scholar
  95. Haider L. Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis. Oxid Med Cell Longev. 2015;2015:725370. doi: 10.1155/2015/725370. Epub 2015 May 27.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Halama A. Metabolomics in cell culture–a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys. 2014;564:100–9. doi: 10.1016/ Epub 2014 Sep 10. Review.PubMedCrossRefGoogle Scholar
  97. Hall PL, Marquardt G, McHugh DM, Currier RJ, Tang H, Stoway SD, Rinaldo P. Postanalytical tools improve performance of newborn screening by tandem mass spectrometry. Genet Med. 2014;16(12):889–95. doi: 10.1038/gim.2014.62. Epub 2014 May 29.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One. 2011;6(7):e21643. doi: 10.1371/journal.pone.0021643. Epub 2011 July 11.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Hardt PD, Mazurek S, Toepler M, Schlierbach P, Bretzel RG, Eigenbrodt E, Kloer HU. Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Br J Cancer. 2004;91(5):980–4.PubMedPubMedCentralGoogle Scholar
  100. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.PubMedCrossRefGoogle Scholar
  101. Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36(1):39–56.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993;11(9):1026–30.CrossRefGoogle Scholar
  103. Hood LE, Hunkapiller MW, Smith LM. Automated DNA sequencing and analysis of the human genome. Genomics. 1987;1(3):201–12. Review.PubMedCrossRefGoogle Scholar
  104. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153(3740):1127–8.PubMedCrossRefGoogle Scholar
  105. Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6(3):209–17. doi: 10.4331/wjbc.v6.i3.209. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, Prehn C, et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet. 2010;42(2):137–41.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jaremek M, Yu Z, Mangino M, Mittelstrass K, Prehn C, Singmann P, et al. Alcohol-induced metabolomic differences in humans. Transl Psychiatry. 2013;3:e276.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Jentzmik F, Stephan C, Miller K, Schrader M, Erbersdobler A, Kristiansen G, et al. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur Urol. 2010;58(1):12–8; discussion 20–1. doi:10.1016/j.eururo.2010.01.035. Epub 2010 Jan 26.Google Scholar
  109. Jex HS. The Edwin Smith Surgical Papyrus: first milestone in the march of medicine. Merck Rep. 1951;60(2):20–2.PubMedGoogle Scholar
  110. Jiang L, Deberardinis RJ. Cancer metabolism: when more is less. Nature. 2012;489(7417):511–12. doi: 10.1038/489511a.PubMedCrossRefGoogle Scholar
  111. Kaddurah-Daouk R, Rozen S, Matson W, Han X, Hulette CM, Burke JR, et al. Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement. 2011;7(3):309–17. doi: 10.1016/j.jalz.2010.06.001. Epub 2010 Nov 13.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Rozen SG, Matson W, et al. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry. 2013;3:e244. doi: 10.1038/tp.2013.18.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kageyama G, Saegusa J, Irino Y, Tanaka S, Tsuda K, Takahashi S, et al. Metabolomics analysis of saliva from patients with primary Sjögren’s syndrome. Clin Exp Immunol. 2015;182(2):149–53. doi: 10.1111/cei.12683. Epub 2015 Sep 15.PubMedCrossRefGoogle Scholar
  114. Kaiser RJ, MacKellar SL, Vinayak RS, Sanders JZ, Saavedra RA, Hood LE. Specific-primer-directed DNA sequencing using automated fluorescence detection. Nucleic Acids Res. 1989;17(15):6087–102.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Keane KN, Cruzat VF, Carlessi R, de Bittencourt Jr PI, Newsholme P. Molecular events linking oxidative stress and inflammation to insulin resistance and ß-cell dysfunction. Oxid Med Cell Longev. 2015;2015:181643. doi: 10.1155/2015/181643. Epub 2015 July 14. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kempf EJ. From Hippocrates to Galen. Med Library Hist J. 1904;2(4):282–307.PubMedPubMedCentralGoogle Scholar
  117. Kendrew JC, Perutz MF. X-ray studies of compounds of biological interest. Annu Rev Biochem. 1957;26:327–72.PubMedCrossRefGoogle Scholar
  118. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC. Structure of myoglobin: a three-dimensional Fourier synthesis at 2 A. resolution. Nature. 1960;185(4711):422–7.PubMedCrossRefGoogle Scholar
  119. Khorana HG. Polynucleotide synthesis and the genetic code. Fed Proc. 1965;24(6):1473–87. Review.PubMedGoogle Scholar
  120. Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, Kojima S, Matsuyama T, Morishima T. Quantitative analysis of Epstein-Barr virus load by using a real-time PCR assay. J Clin Microbiol. 1999;37(1):132–6.PubMedPubMedCentralGoogle Scholar
  121. Koal T, Deters M, Casetta B, Kaever V. Simultaneous determination of four immunosuppressants by means of high speed and robust on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;805(2):215–22.PubMedCrossRefGoogle Scholar
  122. Koal T, Burhenne H, Römling R, Svoboda M, Resch K, Kaever V. Quantification of antiretroviral drugs in dried blood spot samples by means of liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(21):2995–3001.PubMedCrossRefGoogle Scholar
  123. Koal T, Deters M, Resch K, Kaever V. Quantification of the carbapenem antibiotic ertapenem in human plasma by a validated liquid chromatography-mass spectrometry method. Clin Chim Acta. 2006;364(1–2):239–45. Epub 2005 Aug 10.PubMedCrossRefGoogle Scholar
  124. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.PubMedCrossRefGoogle Scholar
  125. König K, Kobold U, Fink G, Leinenbach A, Dülffer T, Thiele R, et al. Quantification of vancomycin in human serum by LC-MS/MS. Clin Chem Lab Med. 2013;51(9):1761–9. doi: 10.1515/cclm-2013-0142.PubMedCrossRefGoogle Scholar
  126. Koster MP, Vreeken RJ, Harms AC, Dane AD, Kuc S, Schielen PC, et al. First-trimester serum acylcarnitine levels to predict preeclampsia: a metabolomics approach. Dis Markers. 2015;2015:857108. doi: 10.1155/2015/857108. Epub 2015 June 4.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Kühne W. [Über das Sekret des Pankreas (1876), Heidelberg Nat]. Med. Verhandl. 1877;1:233–35.Google Scholar
  128. Kulkarni RN. Identifying biomarkers of subclinical diabetes. Diabetes. 2012;61(8):1925–6. doi: 10.2337/db12-0599.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.PubMedCrossRefGoogle Scholar
  130. Laske C, Sohrabi HR, Frost SM, López-de-Ipiña K, Garrard P, Buscema M, et al. Innovative diagnostic tools for early detection of Alzheimer’s disease. Alzheimers Dement. 2015;11(5):561–78. doi: 10.1016/j.jalz.2014.06.004. Epub 2014 Nov 15. Review.PubMedCrossRefGoogle Scholar
  131. Leder P, Nirenberg MW. RNA codewords and protein synthesis, 3. On the nucleotide sequence of a cysteine and a leucine codeword. Proc Natl Acad Sci U S A. 1964;52:1521–9.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Lengyel P, Speyer JF, Ochoa S. Synthetic polynucleotides and the amino acid code. Proc Natl Acad Sci U S A. 1961;47:1936–42.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Levene PA. The structure of yeast nucleic acid. Stud Rockefeller Inst Med Res. 1919;30:221.Google Scholar
  134. Levene PA, Jacobs WA. On the structure of thymus nucleic acid. J Biol Chem. 1912;12(3):411–20.Google Scholar
  135. Lewczuk P, Mroczko B, Fagan A, Kornhuber J. Biomarkers of Alzheimer’s disease and mild cognitive impairment: a current perspective. Adv Med Sci. 2015;60(1):76–82. doi: 10.1016/j.advms.2014.11.002. Epub 2014 Dec 9. Review.PubMedCrossRefGoogle Scholar
  136. Lian JS, Liu W, Hao SR, Chen DY, Wang YY, Yang JL, Jia HY, Huang JR. A serum metabolomic analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune hepatitis. Hepatobiliary Pancreat Dis Int. 2015;14(4):413–21.PubMedCrossRefGoogle Scholar
  137. Liebl DJ, Morris CJ, Henkemeyer M, Parada LF. mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res. 2003;71(1):7–22.PubMedCrossRefGoogle Scholar
  138. Lim S, Oh TJ, Koh KK. Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. Int J Cardiol. 2015;201:408–14. doi: 10.1016/j.ijcard.2015.08.107. [Epub ahead of print] Review.PubMedCrossRefGoogle Scholar
  139. Liotta L, Petricoin E. Molecular profiling of human cancer. Nat Rev Genet. 2000;1(1):48–56. Review.PubMedCrossRefGoogle Scholar
  140. Littman RJ, Littman ML. Galen and the Antonine plague. Am J Philol. 1973;94:243–55.PubMedCrossRefGoogle Scholar
  141. Lloyd SM, Arnold J, Sreekumar A. Metabolomic profiling of hormone-dependent cancers: a bird’s eye view. Trends Endocrinol Metab. 2015;26(9):477–85. doi: 10.1016/j.tem.2015.07.001. Epub 2015 Aug 1. Review.PubMedCrossRefGoogle Scholar
  142. Lu J, Xie G, Jia W, Jia W. Metabolomics in human type 2 diabetes research. Front Med. 2013a;7(1):4–13. doi: 10.1007/s11684-013-0248-4. Epub 2013 Feb 2. Review.PubMedCrossRefGoogle Scholar
  143. Lu J, Xie G, Jia W, Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013b;7(1):53–9. doi: 10.1007/s11684-013-0255-5. Epub 2013 Feb 6. Review.PubMedCrossRefGoogle Scholar
  144. Lundin U, Weinberger K (Inventors). Biocrates life sciences AG (Assignee). New biomarkers for assessing kidney diseases. International patent WO/2010/139341. Published 2010 Dec 09.Google Scholar
  145. Lundin U, Modre-Osprian R, Weinberger KM. Targeted metabolomics for clinical biomarker discovery in multifactorial diseases. In: Ikehara K, editor. Advances in the study of genetic disorders. Croatia: InTech; 2011. p. 81–98.Google Scholar
  146. Maciocia G. The foundations of Chinese medicine. London: Churchill Livingstone; 1989. p. 221.Google Scholar
  147. Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol. 2015;5:347–57. doi: 10.1016/j.redox.2015.06.014 [Epub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  148. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.PubMedPubMedCentralGoogle Scholar
  149. Marquardt G, Currier R, McHugh DM, Gavrilov D, Magera MJ, Matern D, et al. Enhanced interpretation of newborn screening results without analyte cutoff values. Genet Med. 2012;14(7):648–55. doi: 10.1038/gim.2012.2. Epub 2012 Feb 16.PubMedCrossRefGoogle Scholar
  150. Martell M, Gómez J, Esteban JI, Sauleda S, Quer J, Cabot B, Esteban R, Guardia J. High-throughput real-time reverse transcription-PCR quantitation of hepatitis C virus RNA. J Clin Microbiol. 1999;37(2):327–32.PubMedPubMedCentralGoogle Scholar
  151. Mathew S, Krug S, Skurk T, Halama A, Stank A, Artati A, et al. Metabolomics of Ramadan fasting: an opportunity for the controlled study of physiological responses to food intake. J Transl Med. 2014;12:161. doi: 10.1186/1479-5876-12-161.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mattern S. Galen and his patients. Lancet. 2011;378(9790):478–9.PubMedCrossRefGoogle Scholar
  153. Matthaei JH, Jones OW, Martin RG, Nirenberg MW. Characteristics and composition of RNA coding units. Proc Natl Acad Sci U S A. 1962;48:666–77.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci. 1977;74(2):560–4.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Mazurek S, Eigenbrodt E. The tumor metabolome. Anticancer Res. 2003;23(2A):1149–54.PubMedGoogle Scholar
  156. Mazurek S, Grimm H, Wilker S, Leib S, Eigenbrodt E. Metabolic characteristics of different malignant cancer cell lines. Anticancer Res. 1998;18(5A):3275–82.PubMedGoogle Scholar
  157. Mazurek S, Grimm H, Oehmke M, Weisse G, Teigelkamp S, Eigenbrodt E. Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells. Anticancer Res. 2000;20(6D):5151–4.PubMedGoogle Scholar
  158. McHugh D, Cameron CA, Abdenur JE, Abdulrahman M, Adair O, Al Nuaimi SA, et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med. 2011;13(3):230–54. doi: 10.1097/GIM.0b013e31820d5e67.PubMedCrossRefGoogle Scholar
  159. McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF, et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 2009;19(9):1527–41. doi: 10.1101/gr.091868.109. Epub 2009 June 22.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One. 2011;6(7):e22751. doi: 10.1371/journal.pone.0022751. Epub 2011 July 20.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Michels J, Obrist F, Castedo M, Vitale I, Kroemer G. PARP and other prospective targets for poisoning cancer cell metabolism. Biochem Pharmacol. 2014;92(1):164–71. doi: 10.1016/j.bcp.2014.08.026. Epub 2014 Sep 6. Review.PubMedCrossRefGoogle Scholar
  162. Miescher F. [Aus dem wissenschaftlichen Briefwechsel von F. Miescher]. Letter I. To Wilhelm His. Tübingen. 1869 Feb 26. In: His W, et al., editors. [Die Histochemischen und Physiologischen Arbeiten von Friedrich Miescher]. Leipzig: F. C. W. Vogel; 1897;1. p. 33–8.Google Scholar
  163. Miescher-Rüsch F. Ueber die chemische Zusammensetzung der Eiterzellen. Med Chem Unters. 1871;4:441–60.Google Scholar
  164. Millington DS, Terada N, Chace DH, Chen YT, Ding JH, Kodo N, Roe CR. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res. 1992;375:339–54.PubMedGoogle Scholar
  165. Mirsaeidi M, Banoei MM, Winston BW, Schraufnagel DE. Metabolomics: applications and promise in Mycobacterial disease. Ann Am Thorac Soc. 2015;12(9):1278–87. doi: 10.1513/AnnalsATS.201505-279PS.PubMedCrossRefGoogle Scholar
  166. Mishra P, Ambs S. Metabolic signatures of human breast cancer. Mol Cell Oncol. 2015;2(3). pii: e992217.Google Scholar
  167. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2011;481(7381):385–8. doi: 10.1038/nature10642.PubMedPubMedCentralGoogle Scholar
  168. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.PubMedCrossRefGoogle Scholar
  169. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–73.PubMedCrossRefGoogle Scholar
  170. Newman JD, Turner AP. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron. 2005;20(12):2435–53. Epub 2005 Jan 18. Review.PubMedCrossRefGoogle Scholar
  171. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9. Review.PubMedCrossRefGoogle Scholar
  172. Nicholson G, Rantalainen M, Li JV, Maher AD, Malmodin D, Ahmadi KR, et al. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genet. 2011;7(9):e1002270. doi: 10.1371/journal.pgen.1002270. Epub 2011 Sep 8.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Nirenberg MW, Matthaei JH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961;47:1588–602.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Nkuipou-Kenfack E, Duranton F, Gayrard N, Argilés À, Lundin U, Weinberger KM, et al. Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS One. 2014;9(5):e96955.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Orešic M, Hyötyläinen T, Herukka SK, Sysi-Aho M, Mattila I, Seppänan-Laakso T, et al. Metabolome in progression to Alzheimer’s disease. Transl Psychiatry. 2011;1:e57. doi: 10.1038/tp.2011.55.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Orfanos AP, Murphey WH, Guthrie R. A simple fluorometric assay of protoporphyrin in erythrocytes (EPP) as a screening test for lead poisoning. J Lab Clin Med. 1977;89(3):659–65.PubMedGoogle Scholar
  177. Orfanos AP, Naylor EW, Guthrie R. Micromethod for estimating adenosine deaminase activity in dried blood spots on filter paper. Clin Chem. 1978;24(4):591–4.PubMedGoogle Scholar
  178. Orfanos AP, Naylor EW, Guthrie R. Fluorometric micromethod for determination of arginase activity in dried blood spots on filter paper. Clin Chem. 1980a;26(8):1198–200.PubMedGoogle Scholar
  179. Orfanos AP, Naylor EW, Guthrie R. Ultramicromethod for estimation of total glutathione in dried blood spots on filter paper. Anal Biochem. 1980b;104(1):70–4.PubMedCrossRefGoogle Scholar
  180. Osborne MA, Furey WS, Klenerman D, Balasubramanian S. Single-molecule analysis of DNA immobilized on microspheres. Anal Chem. 2000;72(15):3678–81.PubMedCrossRefGoogle Scholar
  181. Parker SP, Cubitt WD. The use of the dried blood spot sample in epidemiological studies. J Clin Pathol. 1999;52(9):633–9. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal. 2015;107:63–74. doi: 10.1016/j.jpba.2014.12.020. Epub 2014 Dec 22. Review.PubMedCrossRefGoogle Scholar
  183. Payen A, Persoz JF. Memoir on diastase, the principal products of its reactions, and their applications to the industrial arts. In Annales de Chimie et de Physique. 1833;53:73–92.Google Scholar
  184. Pena MJ, de Zeeuw D, Mischak H, Jankowski J, Oberbauer R, Woloszczuk W, et al. Prognostic clinical and molecular biomarkers of renal disease in type 2 diabetes. Nephrol Dial Transplant. 2015;30 Suppl 4:iv86–95. doi: 10.1093/ndt/gfv252. Review.PubMedCrossRefGoogle Scholar
  185. Petersen AK, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23(2):534–45. doi: 10.1093/hmg/ddt430. Epub 2013 Sep 6.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002a;359(9306):572–7.PubMedCrossRefGoogle Scholar
  187. Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 2002b;1(9):683–95. Review.PubMedCrossRefGoogle Scholar
  188. Petricoin 3rd EF, Ornstein DK, Paweletz CP, Ardekani A, Hackett PS, Hitt BA, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst. 2002c;94(20):1576–8.PubMedCrossRefGoogle Scholar
  189. Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 2015;8(2):334–42. doi: 10.1161/CIRCGENETICS.114.000804. Epub 2015 Jan 12.PubMedCrossRefGoogle Scholar
  190. Pinto J, Almeida LM, Martins AS, Duarte D, Domingues MR, Barros AS, et al. Impact of fetal chromosomal disorders on maternal blood metabolome: toward new biomarkers? Am J Obstet Gynecol. 2015;213(6):841.e1–841.e15. doi: 10.1016/j.ajog.2015.07.032. Epub 2015 Jul 26.CrossRefGoogle Scholar
  191. Qayumi AK. Avicenna: a bright star from the east. J Invest Surg. 1998;11(4):243–4. Review.PubMedCrossRefGoogle Scholar
  192. Ramesh A, Varghese SS, Doraiswamy J, Malaiappan S. Role of sulfiredoxin in systemic diseases influenced by oxidative stress. Redox Biol. 2014;2C:1023–8. doi: 10.1016/j.redox.2014.09.002. [Epub ahead of print] Review.PubMedCrossRefGoogle Scholar
  193. Raskin S, Phillips 3rd JA, Kaplan G, McClure M, Vnencak-Jones C. Cystic fibrosis genotyping by direct PCR analysis of Guthrie blood spots. PCR Methods Appl. 1992;2(2):154–6.PubMedCrossRefGoogle Scholar
  194. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz N, et al. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med. 2011;365(8):709–17. doi: 10.1056/NEJMoa1106920. Epub 2011 July 27.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Raymond S, Weintraub L. Acrylamide gel as a supporting medium for zone electrophoresis. Science. 1959;130(3377):711.PubMedCrossRefGoogle Scholar
  196. Ried JS, Baurecht H, Stückler F, Krumsiek J, Gieger C, Heinrich J, et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy. 2013;68(5):629–36. doi: 10.1111/all.12110. Epub 2013 Mar 1.PubMedCrossRefGoogle Scholar
  197. Ried JS, Shin SY, Krumsiek J, Illig T, Theis FJ, Spector TD, et al. Novel genetic associations with serum level metabolites identified by phenotype set enrichment analyses. Hum Mol Genet. 2014;23(21):5847–57. doi: 10.1093/hmg/ddu301. Epub 2014 June 13.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Roberts CS. The case of Richard Cabot. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990.Google Scholar
  199. Robinson S, Pool R, Giffin R. Forum on drug discovery, development, and translation. Emerging safety science: workshop summary. Washington, DC: National Academies Press (US); 2008.Google Scholar
  200. Rolinski B, Arnecke R, Dame T, Kreischer J, Olgemöller B, Wolf E, et al. The biochemical metabolite screen in the Munich ENU Mouse Mutagenesis Project: determination of amino acids and acylcarnitines by tandem mass spectrometry. Mamm Genome. 2000;11(7):547–51.PubMedCrossRefGoogle Scholar
  201. Rosales-Corral S, Tan DX, Manchester L, Reiter RJ. Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. Oxid Med Cell Longev. 2015;2015:985845. doi: 10.1155/2015/985845. Epub 2015 Feb 26. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Röschinger W, Muntau AC, Duran M, Dorland L, IJlst L, Wanders RJ, Roscher AA. Carnitine-acylcarnitine translocase deficiency: metabolic consequences of an impaired mitochondrial carnitine cycle. Clin Chim Acta. 2000;298(1–2):55–68.PubMedCrossRefGoogle Scholar
  203. Röschinger W, Olgemöller B, Fingerhut R, Liebl B, Roscher AA. Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. Eur J Pediatr. 2003;162 Suppl 1:S67–76. Epub 2003 Nov 14. Review.PubMedCrossRefGoogle Scholar
  204. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52. doi: 10.1038/nature10242.PubMedCrossRefGoogle Scholar
  205. Ryle AP, Sanger F, Smith LF, Kitai R. The disulphide bonds of insulin. Biochem J. 1955;60(4):541–56.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.PubMedCrossRefGoogle Scholar
  207. Sander S, Janzen N, Janetzky B, Scholl S, Steuerwald U, Schäfer J, Sander J. Neonatal screening for medium chain acyl-CoA deficiency: high incidence in Lower Saxony (northern Germany). Eur J Pediatr. 2001;160(5):318–19.PubMedCrossRefGoogle Scholar
  208. Sands BE. Biomarkers of inflammation in inflammatory Bowel disease. Gastroenterology. 2015;149(5):1275–1285.e2. doi: 10.1053/j.gastro.2015.07.003. Epub 2015 Jul 9.PubMedCrossRefGoogle Scholar
  209. Sanger F. The free amino groups of insulin. Biochem J. 1945;39(5):507–15.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Sanger F. The terminal peptides of insulin. Biochem J. 1949;45(5):563–74.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.PubMedCrossRefGoogle Scholar
  212. Sborov DW, Haverkos BM, Harris PJ. Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opin Investig Drugs. 2015;24(1):79–94. Epub 2014 Sep 16.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Schwartz EI, Khalchitsky SE, Eisensmith RC, Woo SL. Polymerase chain reaction amplification from dried blood spots on Guthrie cards. Lancet. 1990;336(8715):639–40.PubMedCrossRefGoogle Scholar
  214. Seger C, Tentschert K, Stöggl W, Griesmacher A, Ramsay SL. A rapid HPLC-MS/MS method for the simultaneous quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human blood samples. Nat Protoc. 2009;4(4):526–34. doi: 10.1038/nprot.2009.25.PubMedCrossRefGoogle Scholar
  215. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–5.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Sonntag D, Koal T, Ramsay SL, Dammeier S, Weinberger KM, Unterwurzacher I (Inventors). Biocrates life sciences AG (Assignee). Inflammation and oxidative stress level assay. International patent WO/2008/145384. Published 2008 Dec 4.Google Scholar
  217. Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Cancer metabolism: new validated targets for drug discovery. Oncotarget. 2013;4(8):1309–16.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17.PubMedCrossRefGoogle Scholar
  219. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–14. doi: 10.1038/nature07762.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Stiefel M, Shaner A, Schaefer SD. The Edwin Smith Papyrus: the birth of analytical thinking in medicine and otolaryngology. Laryngoscope. 2006;116(2):182–8.PubMedCrossRefGoogle Scholar
  221. Strauss EC, Kobori JA, Siu G, Hood LE. Specific-primer-directed DNA sequencing. Anal Biochem. 1986;154(1):353–60.PubMedCrossRefGoogle Scholar
  222. Struys EA, Heijboer AC, van Moorselaar J, Jakobs C, Blankenstein MA. Serum sarcosine is not a marker for prostate cancer. Ann Clin Biochem. 2010;47(Pt 3):282. doi: 10.1258/acb.2010.009270. Epub 2010 Mar 16.PubMedCrossRefGoogle Scholar
  223. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010;5(11):e13953.PubMedPubMedCentralCrossRefGoogle Scholar
  224. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wägele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60.PubMedCrossRefGoogle Scholar
  225. Then C, Wahl S, Kirchhofer A, Grallert H, Krug S, Kastenmüller G, et al. Plasma metabolomics reveal alterations of sphingo- and glycerophospholipid levels in non-diabetic carriers of the transcription factor 7-like 2 polymorphism rs7903146. PLoS One. 2013;8(10):e78430. doi: 10.1371/journal.pone.0078430.eCollection2013.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76(9):4350–4.PubMedPubMedCentralCrossRefGoogle Scholar
  227. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 2008;18(7):1051–63. doi: 10.1101/gr.076463.108. Epub 2008 May 13.PubMedPubMedCentralCrossRefGoogle Scholar
  228. van den Ouweland JM, Vogeser M, Bächer S. Vitamin D and metabolites measurement by tandem mass spectrometry. Rev Endocr Metab Disord. 2013;14(2):159–84. doi: 10.1007/s11154-013-9241-0.PubMedCrossRefGoogle Scholar
  229. Van Hove JL, Zhang W, Kahler SG, Roe CR, Chen YT, Terada N, Chace DH, Iafolla AK, Ding JH, Millington DS. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood. Am J Hum Genet. 1993;52(5):958–66.PubMedPubMedCentralGoogle Scholar
  230. Van Weemen BK, Schuurs AH. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15(3):232–6.PubMedCrossRefGoogle Scholar
  231. Vischer E, Chargaff E. The separation and characterization of purines in minute amounts of nucleic acid hydrolysates. J Biol Chem. 1947;168(2):781.PubMedGoogle Scholar
  232. Vischer E, Zamenhof S, Chargaff E. Microbial nucleic acids; the desoxypentose nucleic acids of avian tubercle bacilli and yeast. J Biol Chem. 1949;177(1):429–38.PubMedGoogle Scholar
  233. Vogel U, Szczepanowski R, Claus H, Jünemann S, Prior K, Harmsen D. Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information. J Clin Microbiol. 2012;50(6):1889–94. doi: 10.1128/JCM.00038-12. Epub 2012 Mar 29.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Vogeser M. Quantification of circulating 25-hydroxyvitamin D by liquid chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol. 2010;121(3–5):565–73. doi: 10.1016/j.jsbmb.2010.02.025. Epub 2010 Mar 4.PubMedCrossRefGoogle Scholar
  235. Vollert S, Kaessner N, Heuser A, Hanauer G, Dieckmann A, Knaack D, et al. The glucose-lowering effects of the PDE4 inhibitors roflumilast and roflumilast-N-oxide in db/db mice. Diabetologia. 2012;55(10):2779–88. doi: 10.1007/s00125-012-2632-z. Epub 2012 July 13.PubMedCrossRefGoogle Scholar
  236. Vollmer DW, Jinks DC, Guthrie R. Isocratic reverse-phase liquid chromatography assay for amino acid metabolic disorders using eluates of dried blood spots. Anal Biochem. 1990;189(1):115–21.PubMedCrossRefGoogle Scholar
  237. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. doi: 10.1038/nm.2307. Epub 2011 Mar 20.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol. 2012;8:615.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Warburg O. Iron, the oxygen-carrier of respiration-ferment. Science. 1925;61(1588):575–82.PubMedCrossRefGoogle Scholar
  240. Warburg O. The chemical constitution of respiration ferment. Science. 1928;68(1767):437–43.PubMedCrossRefGoogle Scholar
  241. Warburg O. On the origin of cancer cells. Science. 1956a;123(3191):309–14.PubMedCrossRefGoogle Scholar
  242. Warburg O. On respiratory impairment in cancer cells. Science. 1956b;124(3215):269–70.PubMedGoogle Scholar
  243. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225–34. doi: 10.1016/j.ccr.2010.01.020. Epub 2010 Feb 18.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Watson JD, Crick FH. The structure of DNA. Cold Spring Harb Symp Quant Biol. 1953a;18:123–31.PubMedCrossRefGoogle Scholar
  246. Watson JD, Crick FH. Molecular structure of nucleic acids. Nature. 1953b;171(4356):737–8.PubMedCrossRefGoogle Scholar
  247. Weinberger KM. Metabolomics in diagnosing metabolic diseases. Ther Umsch. 2008;65(9):487–91. doi: 10.1024/0040-5930.65.9.487.Review.German.PubMedCrossRefGoogle Scholar
  248. Weinberger KM, Wiedenmann E, Böhm S, Jilg W. Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR). J Virol Methods. 2000;85(1–2):75–82.PubMedCrossRefGoogle Scholar
  249. Weinberger B, Plentz A, Weinberger KM, Hahn J, Holler E, Jilg W. Quantitation of Epstein-Barr virus mRNA using reverse transcription and real-time PCR. J Med Virol. 2004;74(4):612–18.PubMedCrossRefGoogle Scholar
  250. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452(7189):872–6.PubMedCrossRefGoogle Scholar
  251. Wikoff WR, Hanash S, DeFelice B, Miyamoto S, Barnett M, Zhao Y, et al. Diacetylspermine is a novel prediagnostic serum biomarker for non-small-cell lung cancer and has additive performance with pro-surfactant protein B. J Clin Oncol. 2015;33(33):3880–6. doi: 10.1200/JCO.2015.61.7779. Epub 2015 Aug 17.PubMedCrossRefGoogle Scholar
  252. Wilkins MHF, Stokes AR, Wilson HR. Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature. 1953;171(4356):738–40.PubMedCrossRefGoogle Scholar
  253. Wouters EF, Bredenbröker D, Teichmann P, Brose M, Rabe KF, Fabbri LM, Göke B. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(9):E1720–5. doi: 10.1210/jc.2011-2886. Epub 2012 June 20.PubMedCrossRefGoogle Scholar
  254. Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131(9):774–85. doi: 10.1161/CIRCULATIONAHA.114.013116. Epub 2015 Jan 8.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60. doi: 10.1093/nar/gkp356. Epub 2009 May 8.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40(Web Server issue):W127–33.PubMedPubMedCentralCrossRefGoogle Scholar
  257. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–7. doi: 10.1093/nar/gkv380. Epub 2015 Apr 20.PubMedPubMedCentralCrossRefGoogle Scholar
  258. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39:1157–75.PubMedPubMedCentralCrossRefGoogle Scholar
  259. Yanofsky C. The favorable features of tryptophan synthase for proving Beadle and Tatum’s one gene-one enzyme hypothesis. Genetics. 2005;169(2):511–16.PubMedPubMedCentralGoogle Scholar
  260. Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, et al. Human serum metabolic profiles are age dependent. Aging Cell. 2012;11(6):960–7. doi: 10.1111/j.1474-9726.2012.00865.x. Epub 2012 Aug 27.PubMedPubMedCentralCrossRefGoogle Scholar
  261. Zander J, Maier B, Suhr A, Zoller M, Frey L, Teupser D, Vogeser M. Quantification of piperacillin, tazobactam, cefepime, meropenem, ciprofloxacin and linezolid in serum using an isotope dilution UHPLC-MS/MS method with semi-automated sample preparation. Clin Chem Lab Med. 2015;53(5):781–91. doi: 10.1515/cclm-2014-0746.PubMedCrossRefGoogle Scholar
  262. Zheng Z, Advani A, Melefors O, Glavas S, Nordström H, Ye W, Engstrand L, Andersson AF. Titration-free massively parallel pyrosequencing using trace amounts of starting material. Nucleic Acids Res. 2010;38(13):e137. doi: 10.1093/nar/gkq332. Epub 2010 Apr 30.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Research Group for Clinical Bioinformatics, Institute of Electrical and Biomedical Engineering (IEBE)University for Health Sciences, Medical Informatics and Technology (UMIT)Hall in TirolAustria
  2. 2.sAnalytiCo LtdBelfastUK
  3. 3.Weinberger & Weinberger Life Sciences ConsultingMiemingAustria
  4. 4.Institute of Health Care Engineering with European Notified Body of Medical DevicesGraz University of TechnologyGrazAustria

Personalised recommendations