Skip to main content

Biostatistics, Data Mining and Computational Modeling

  • Chapter
  • First Online:
  • 2481 Accesses

Part of the book series: Translational Bioinformatics ((TRBIO,volume 11))

Abstract

With the rapid development of high-throughput experimental technologies, bioinformatics and computational modeling has been a rapid evolving science field concerned with the development of various analysis methods and tools for investigating these large biological data efficiently and rigorously. There are many methods and tools available for the analysis of single omics dataset. It is a great challenge that biological systems are being further investigated by integrating multiple heterogeneous and large omics data. Many powerful methods and algorithmic techniques have been developed to answer important biomedical questions through integrative analysis. In this chapter, in order to help the bench biologist analyze omics data, we introduced various methods from classical statistical techniques for single marker association and multivariate analysis to more recent advances from gene network analysis and integrative analysis of multi-omics data.

*Author contributed equally with all other contributors

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for constructing large scale gene networks. PLoS ONE. 2012;7:e29348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7:781–91.

    Article  CAS  PubMed  Google Scholar 

  • Barnholtz-Sloan JS, Guan X, Zeigler-Johnson C, Meropol NJ, Rebbeck TR. Decision tree–based modeling of androgen pathway genes and prostate cancer risk. Cancer Epidemiol Biomark Prev. 2011;20:1146–55.

    Article  CAS  Google Scholar 

  • Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, et al. Tissue classification with gene expression profiles. J Comput Biol. 2000;7:559–83.

    Article  CAS  PubMed  Google Scholar 

  • Bennett BD, Xiong Q, Mukherjee S, Furey TS. A predictive framework for integrating disparate genomic data types using sample-specific gene set enrichment analysis and multi-task learning. PLoS ONE. 2012;7:e44635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulesteix A-L, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief Bioinform. 2007;8:32–44.

    Article  CAS  PubMed  Google Scholar 

  • Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40.

    Google Scholar 

  • Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  • Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet. 2010;86:6–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst Biol. 2010;4:67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K-H, Wang K-J, Tsai M-L, Wang K-M, Adrian AM, et al. Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinf. 2014;15:49.

    Article  Google Scholar 

  • Clemmensen L, Hastie T, Witten D, Ersbøll B. Sparse discriminant analysis. Technometrics. 2011;53:406–13.

    Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.

    Article  PubMed  Google Scholar 

  • Dietterich TG. Ensemble methods in machine learning. In: Multiple classifier systems. Berlin/Heidelberg: Springer; 2000. p. 1–15.

    Google Scholar 

  • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002;97:77–87.

    Article  CAS  Google Scholar 

  • Efron B, Tibshirani R. On testing the significance of sets of genes. The Annals of Applied Statistics 2007;1:107–29.

    Article  Google Scholar 

  • Ferreira MA, Purcell SM. A multivariate test of association. Bioinformatics. 2009;25:132–3.

    Article  CAS  PubMed  Google Scholar 

  • Freund Y, Schapire RE. Experiments with a new boosting algorithm. 1996:148–56.

    Google Scholar 

  • Fridley BL, Lund S, Jenkins GD, Wang L. A Bayesian integrative genomic model for pathway analysis of complex traits. Genet Epidemiol. 2012;36:352–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7:601–20.

    Article  CAS  PubMed  Google Scholar 

  • Furlan D, Carnevali IW, Bernasconi B, Sahnane N, Milani K, et al. Hierarchical clustering analysis of pathologic and molecular data identifies prognostically and biologically distinct groups of colorectal carcinomas. Mod Pathol. 2011;24:126–37.

    Article  CAS  PubMed  Google Scholar 

  • Galesloot TE, van Steen K, Kiemeney LA, Janss LL, Vermeulen SH. A comparison of multivariate genome-wide association methods. PLoS ONE. 2014;9:e95923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Große-Brinkhaus C, Storck LC, Frieden L, Neuhoff C, Schellander K, et al. Genome-wide association analyses for boar taint components and testicular traits revealed regions having pleiotropic effects. BMC Genet. 2015;16:36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46:389–422.

    Article  Google Scholar 

  • He H, Zhang L, Li J, Wang YP, Zhang JG, et al. Integrative analysis of GWASs, human protein interaction, and gene expression identified gene modules associated with BMDs. J Clin Endocrinol Metab. 2014;99:E2392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzinger ER, Ritchie MD. Integrating heterogeneous high-throughput data for meta-dimensional pharmacogenomics and disease-related studies. Pharmacogenomics. 2012;13:213–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzinger ER, Dudek SM, Frase AT, Pendergrass SA, Ritchie MD. ATHENA: the analysis tool for heritable and environmental network associations. Bioinformatics; 2013;30(5):698–705.

    Google Scholar 

  • Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics. 2001;17:721–8.

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Quan Y, He M, Zhou B. Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data. J Exp Clin Cancer Res. 2009;28:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Breheny P, Ma S. A selective review of group selection in high-dimensional models. Stat Sci Rev J Instit Math Stat. 2012;27:481–99.

    Google Scholar 

  • Jansen RC, Nap J-P. Genetical genomics: the added value from segregation. TRENDS Genet. 2001;17:388–91.

    Article  CAS  PubMed  Google Scholar 

  • Kalaev M, Smoot M, Ideker T, Sharan R. NetworkBLAST: comparative analysis of protein networks. Bioinformatics. 2008;24:594–6.

    Article  CAS  PubMed  Google Scholar 

  • Kayano M, Imoto S, Yamaguchi R, Miyano S. Multi-omics approach for estimating metabolic networks using low-order partial correlations. J Comput Biol. 2013;20:571–82.

    Article  CAS  PubMed  Google Scholar 

  • Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, et al. PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. 2004;32:W83–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendziorski C, Chen M, Yuan M, Lan H, Attie A. Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics. 2006;62:19–27.

    Article  CAS  PubMed  Google Scholar 

  • Kenney-Hunt JP, Wang B, Norgard EA, Fawcett G, Falk D, et al. Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics. 2008;178:2275–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet. 2008;40:904–8.

    Article  CAS  PubMed  Google Scholar 

  • Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 2012;8:e1002375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian correlated clustering to integrate multiple datasets. Bioinformatics. 2012;28:3290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klei L, Luca D, Devlin B, Roeder K. Pleiotropy and principal components of heritability combine to increase power for association analysis. Genet Epidemiol. 2008;32:9–19.

    Article  PubMed  Google Scholar 

  • Krishnapuram B, Carin L, Figueiredo MA, Hartemink AJ. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Transac Pattern Anal Mach Intell. 2005;27:957–68.

    Article  Google Scholar 

  • Lando M, Holden M, Bergersen LC, Svendsrud DH, Stokke T, et al. Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer. PLoS Genet. 2009;5:e1000719.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Cao KA, Martin PGP, Robert-Granie C, Besse P. Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinf. 2009;10:34.

    Article  Google Scholar 

  • Lê Cao K-A, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinf. 2011;12:253.

    Article  Google Scholar 

  • Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang S, Liu C-C, Zhou XJ. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics. 2012;28:2458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Lin D, Cao H, Wang Y-P. An improved sparse representation model with structural information for Multicolour Fluorescence In-Situ Hybridization (M-FISH) image classification. BMC Syst Biol. 2013;7:S5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao C-S, Lu K, Baym M, Singh R, Berger B. IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics. 2009;25:i253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Zhang J, Li J, He H, Deng H-W, et al. Integrative analysis of multiple diverse omics datasets by sparse group multitask regression. Frontiers in cell and developmental biology. 2014a;2:62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin D, Cao H, Calhoun VD, Wang Y-P. Sparse models for correlative and integrative analysis of imaging and genetic data. J Neurosci Methods. 2014b;237:69–78.

    Article  PubMed  Google Scholar 

  • Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics. 2013;29(20):2610–6.

    Google Scholar 

  • Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R. A significance test for the lasso. Ann Stat. 2014;42:413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Louhimo R, Hautaniemi S. CNAmet: an R package for integrating copy number, methylation and expression data. Bioinformatics. 2011;27:887–8.

    Article  CAS  PubMed  Google Scholar 

  • Makretsov NA, Huntsman DG, Nielsen TO, Yorida E, Peacock M, et al. Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res. 2004;10:6143–51.

    Article  CAS  PubMed  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39:906–13.

    Article  CAS  PubMed  Google Scholar 

  • Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf. 2006;7 Suppl 1:S7.

    Article  Google Scholar 

  • Melzer D, Perry JR, Hernandez D, Corsi A-M, Stevens K, et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 2008;4:e1000072.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra K, Carvunis A-R, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14:719–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon H, Ahn H, Kodell RL, Lin C-J, Baek S, et al. Classification methods for the development of genomic signatures from high-dimensional data. Genome Biol. 2006;7:R121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008;9:S4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen MN, Rajapakse JC. Multi-class support vector machines for protein secondary structure prediction. Genome Inform. 2003;14:218–27.

    CAS  PubMed  Google Scholar 

  • Noble WS. Support vector machine applications in computational biology. In: Kernel methods in computational biology. The MIT Press; 2014. p. 71–92.

    Google Scholar 

  • Ogutu JO, Schulz-Streeck T, Piepho H-P. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BioMed Cent Ltd. 2012;6(2):1–6.

    Google Scholar 

  • O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FC, Elliott P, et al. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS ONE. 2012;7:e34861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkhomenko E, Tritchler D, Beyene J. Sparse canonical correlation analysis with application to genomic data integration. Stat Appl Genet Mol Biol. 2009;8:1–34

    Google Scholar 

  • Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. J Am Stat Assoc. 2009;104:735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reverter F, Vegas E, Oller JM. Kernel-PCA data integration with enhanced interpretability. BMC Syst Biol. 2014;8:S6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sass S, Buettner F, Mueller NS, Theis FJ. A modular framework for gene set analysis integrating multilevel omics data. Nucleic Acids Res. 2013;41:9622–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37:710–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Deng H-W, Calhoun V, Wang Y-P. Integrated analysis of gene expression and copy number data on gene shaving using independent component analysis. IEEE/ACM Transac Comput Biol Bioinform (TCBB). 2011;8:1568–79.

    Article  Google Scholar 

  • Shevade SK, Keerthi SS. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics. 2003;19:2246–53.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Xu J, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc Natl Acad Sci. 2008;105:12763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soneson C, Lilljebjörn H, Fioretos T, Fontes M. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis. BMC Bioinf. 2010;11:191.

    Article  Google Scholar 

  • Srivas R, Hannum G, Ruscheinski J, Ono K, Wang P-L, et al. Assembling global maps of cellular function through integrative analysis of physical and genetic networks. Nat Protoc. 2011;6:1308–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens M. A unified framework for association analysis with multiple related phenotypes. PLoS ONE. 2013;8:e65245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui J, Adali T, Yu Q, Chen J, Calhoun VD. A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods. 2012;204:68–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang CS, Ferreira MA. A gene-based test of association using canonical correlation analysis. Bioinformatics. 2012;28:845–50.

    Article  CAS  PubMed  Google Scholar 

  • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B (Methodol). 1996;58(1):267–88.

    Google Scholar 

  • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98:5116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyekucheva S, Marchionni L, Karchin R, Parmigiani G. Integrating diverse genomic data using gene sets. Genome Biol. 2011;12:R105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Sluis S, Posthuma D, Dolan CV. TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies. PLoS Genet. 2013;9:e1003235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26:i237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waaijenborg S, Hamer PCVDW, Zwinderman AH. Quantifying the association between gene expressions and DNA-Markers by penalized canonical correlation analysis. Stat Appl Genet Mol Biol. 2008; 7

    Google Scholar 

  • Wahl S, Vogt S, Stückler F, Krumsiek J, Bartel J, et al. Multi-omic signature of body weight change: results from a population-based cohort study. BMC Med. 2015;13:48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Bø TH, Jonassen I, Myklebost O, Hovig E. Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinf. 2003;4:60.

    Article  CAS  Google Scholar 

  • Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet. 2007;81:1278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Nan B, Zhu N, Zhu J. Hierarchically penalized Cox regression with grouped variables. Biometrika. 2009;96:307–22.

    Article  Google Scholar 

  • Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11:843–54.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Baladandayuthapani V, Holmes CC, Do K-A. Integrative network-based Bayesian analysis of diverse genomics data. BMC Bioinf. 2013;14:S8.

    Google Scholar 

  • Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics. 2006;22:2523–31.

    Article  CAS  PubMed  Google Scholar 

  • Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics. 2009;10:515–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu B, Abbott T, Fishman D, McMurray W, Mor G, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics. 2003;19:1636–43.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res. 2012;22:386–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanishi Y, Vert J-P, Nakaya A, Kanehisa M. Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis. Bioinformatics. 2003;19:i323–30.

    Article  PubMed  Google Scholar 

  • Ye J. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J Mach Learn Res JMLR. 2005;6:483–502.

    Google Scholar 

  • Yeang C-H, Ramaswamy S, Tamayo P, Mukherjee S, Rifkin RM, et al. Molecular classification of multiple tumor types. Bioinformatics. 2001;17:S316–22.

    Article  PubMed  Google Scholar 

  • Zhang MQ. Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc Natl Acad Sci. 1997;94:565–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.

    Google Scholar 

  • Zhu J, Zhang B, Smith EN, Drees B, Brem RB, et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet. 2008;40:854–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wen Deng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

He, H., Lin, D., Zhang, J., Wang, Y., Deng, HW. (2016). Biostatistics, Data Mining and Computational Modeling. In: Wang, X., Baumgartner, C., Shields, D., Deng, HW., Beckmann, J. (eds) Application of Clinical Bioinformatics. Translational Bioinformatics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7543-4_2

Download citation

Publish with us

Policies and ethics