Skip to main content

Introduction

Part of the Springer Series in Materials Science book series (SSMATERIALS,volume 233)

Abstract

This book is about reviewing and exploring the opportunities for introducing increased functionality into coating systems. The intention is to not only provide an account of recent developments, such as other books of this genre, but to also review, in detail, the nature of the problems that we are trying to address in advancing the materials science of coating systems. To this end we examine the fundamentals of corrosion science, the materials science of coatings, and developments in characterisation methods that all help to give an overview of the field. Importantly, we also look at the needs of industry with respect to developments in the coatings field.

Keywords

  • Coating System
  • Layered Double Hydroxide
  • Cosmetic Appearance
  • Inhibitor Release
  • Anodise Coating

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-7540-3_1
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-7540-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4

References

  1. P.T. LaPuma, J.M. Fox, E.C. Kimmel, Chromate concentration bias in primer paint particles. Regul. Toxicol. Pharmacol. 33(3), 343–349 (2001)

    CrossRef  Google Scholar 

  2. G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Corrosion Costs and Preventative Strategies in the United States, F.H.A. Department of Transport, Editor. 2002, (NACE International, Houston)

    Google Scholar 

  3. Anon., Success stories: air force: material substitution and new sealing technologies keep airframes flying longer. AMPTIAC Quarterley. 7(4), 57–61

    Google Scholar 

  4. R.A.C Laudise, Aging of U.S. Air Force Aircraft. (National Research Council (United States), Washington D.C, 1997)

    Google Scholar 

  5. M. Kendig, M. Hon, L. Warren, ‘Smart’ corrosion inhibiting coatings. Prog. Org. Coat. 47(3–4), 183–189 (2003)

    CrossRef  Google Scholar 

  6. A. Trinchi et al. Distributed quantum dot sensors for monitoring the integrity of protective aerospace coatings, in 2012 IEEE Aerospace Conference (2012)

    Google Scholar 

  7. J.R. Broach, J. Thorner, High-throughput screening for drug discovery. Nature 384(6604), 14–16 (1996)

    CrossRef  Google Scholar 

  8. O.G. Schramm et al., Polymeric nanocontainers with high loading capacity of hydrophobic drugs. Soft Matter 5(8), 1662–1667 (2009)

    CrossRef  Google Scholar 

  9. H.Q. Zhang et al., Combinatorial and high-throughput approaches in polymer science. Meas. Sci. Technol. 16(1), 203–211 (2005)

    CrossRef  Google Scholar 

  10. R. Hoogenboom, M.A.R. Meier, U.S. Schubert, Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present. Macromol. Rapid Commun. 24(1), 16–32 (2003)

    Google Scholar 

  11. S. Bode et al., Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym. Chem. 4(18), 4966–4973 (2013)

    CrossRef  Google Scholar 

  12. S.J. Garcia, H.R. Fischer, S. van der Zwaag, A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coat. 72(3), 211–221 (2011)

    CrossRef  Google Scholar 

  13. B.D. Chambers, S.R. Taylor, The high throughput assessment of aluminium alloy corrosion using fluorometric methods. Part II—A combinatorial study of corrosion inhibitors and synergistic combinations. Corros. Sci. 49(3), 1597–1609 (2007)

    CrossRef  Google Scholar 

  14. B.D. Chambers, S.R. Taylor, High-throughput assessment of inhibitor synergies on aluminum alloy 2024-T3 through measurement of surface copper enrichment. Corrosion 63(3), 268–276 (2007)

    CrossRef  Google Scholar 

  15. B.D. Chambers, S.R. Taylor, The high throughput assessment of aluminium alloy corrosion using fluorometric methods. Part I—Development of a fluorometric method to quantify aluminium ion concentration. Corros. Sci. 49(3), 1584–1596 (2007)

    CrossRef  Google Scholar 

  16. Chambers, B.D., The Discovery and Investigation of Synergistic Combinations of Corrosion Inhibitors for AA2024-T3. (University of Virginia, Charlottesville, VA, 2007)

    Google Scholar 

  17. P.A. White et al., A new high-throughput method for corrosion testing. Corros. Sci. 58, 327–331 (2012)

    CrossRef  Google Scholar 

  18. S.J. Garcia et al., Validation of a fast scanning technique for corrosion inhibitor selection: influence of cross-contamination on AA2024-T3. Surf. Interface Anal. 42(4), 205–210 (2010)

    CrossRef  Google Scholar 

  19. P.A. White et al., High-throughput channel arrays for inhibitor testing: Proof of concept for AA2024-T3. Corros. Sci. 51(10), 2279–2290 (2009)

    CrossRef  Google Scholar 

  20. T.H. Muster et al., A rapid screening multi-electrode method for the evaluation of corrosion inhibitors. Electrochim. Acta 54(12), 3402–3411 (2009)

    CrossRef  Google Scholar 

  21. X.Z. Wang et al., Robust QSAR model development in high-throughput catalyst discovery based on genetic parameter optimisation. Chem. Eng. Res. Des. 87(10A), 1420–1429 (2009)

    CrossRef  Google Scholar 

  22. F.H. Scholes et al., Chromate leaching from inhibited primers—Part I. Characterisation of leaching. Prog. Org. Coat. 56(1), 23–32 (2006)

    CrossRef  Google Scholar 

  23. Hoschke, N., et al., Structural Health Monitoring of Space Vehicle Thermal Protection Systems, in Structural Health Monitoring: Research and Applications, ed. by W.K. Chiu and S.C. Galea (Trans Tech Publications Ltd, Stafa-Zurich, 2013), pp. 268–280

    Google Scholar 

  24. L. Fedrizzi et al., EIS study of environmentally friendly coil coating performances. Prog. Org. Coat. 29(1–4), 89–96 (1996)

    CrossRef  Google Scholar 

  25. P. Carbonini et al., Electrochemical characterisation of multilayer organic coatings. Prog. Org. Coat. 29(1–4), 13–20 (1996)

    CrossRef  Google Scholar 

  26. S. Wernick, R. Pinner, P.G. Sheasby, The Surface Treatment and Finishing of Aluminium and its Alloys, 5th edn. (Finishing Publications and ASM International, Teddington, 1987)

    Google Scholar 

  27. J. Mardel et al., The characterisation and performance of Ce(dbp)3-inhibited epoxy coatings. Prog. Org. Coat. 70(2–3), 91–101 (2011)

    CrossRef  Google Scholar 

  28. S.A. Furman et al., Corrosion in artificial defects II. Chromate reactions. Corros. Sci. 48(7), 1827–1847 (2006)

    CrossRef  Google Scholar 

  29. R.L. Howard et al., Inhibition of cut edge corrosion of coil-coated architectural cladding. Prog. Org. Coat. 37(1–2), 83–90 (1999)

    CrossRef  Google Scholar 

  30. I.M. Zin et al., The mode of action of chromate inhibitor in epoxy primer on galvanized steel. Prog. Org. Coat. 33(3–4), 203–210 (1998)

    CrossRef  Google Scholar 

  31. S.J. Garcia, Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polymer J. 53(1), 118–125 (2014)

    CrossRef  Google Scholar 

  32. Fischer, H.R., Nat. Sci. 2, 873–901 (2010)

    Google Scholar 

  33. D.Y. Wu, S. Meure, D. Solomon, Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 33(5), 479–522 (2008)

    CrossRef  Google Scholar 

  34. C. Challener, The intelligence behind smart coatings. J. Coat. Technol. 2006(January), 50–55

    Google Scholar 

  35. M.W. Kendig, R.G. Buchheit, Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 59(5), 379–400 (2003)

    CrossRef  Google Scholar 

  36. K.D. Ralston et al., Corrosion inhibition of aluminum alloy 2024-T3 by aqueous vanadium species. J. Electrochem. Soc. 155(7), C350–C359 (2008)

    CrossRef  Google Scholar 

  37. A.N. Salak et al., Anion exchange in Zn-Al layered double hydroxides: In situ X-ray diffraction study. Chem. Phys. Lett. 495(1–3), 73–76 (2010)

    CrossRef  Google Scholar 

  38. M.L. Zheludkevich et al., Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci. 52(2), 602–611 (2010)

    CrossRef  Google Scholar 

  39. S.K. Poznyak et al., Novel Inorganic Host Layered Double Hydroxides Intercalated with Guest Organic Inhibitors for Anticorrosion Applications. ACS Appl. Mater. Interfaces 1(10), 2353–2362 (2009)

    CrossRef  Google Scholar 

  40. G. McAdam et al., Fiber optic sensors for detection of corrosion within aircraft. Struct. Health Monit. 4(1), 47–56 (2005)

    CrossRef  Google Scholar 

  41. S.K. Sahoo, V. Labhasetwar, Nanotech approaches to delivery and imaging drug. Drug Discov. Today 8(24), 1112–1120 (2003)

    CrossRef  Google Scholar 

  42. M. Nishikawa et al., Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther. 7(7), 548–555 (2000)

    CrossRef  Google Scholar 

  43. I. Roy et al., Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm. 250(1), 25–33 (2003)

    CrossRef  Google Scholar 

  44. S.R. Taylor, B.D. Chambers, Identification and characterization of nonchromate corrosion inhibitor synergies using high-throughput methods. Corrosion 64(3), 255–270 (2008)

    CrossRef  Google Scholar 

  45. S.R. Taylor, B.D. Chambers, The discovery of non-chromate corrosion inhibitors for aerospace alloys using high-throughput screening methods. Corros. Rev. 25(5–6), 571–590 (2007)

    Google Scholar 

  46. B.D. Chambers, S.R. Taylor, M.W. Kendig, Rapid discovery of corrosion inhibitors and synergistic combinations using high-throughput screening methods. Corrosion 61(5), 480–489 (2005)

    CrossRef  Google Scholar 

  47. S.J. Garcia et al., The influence of pH on corrosion inhibitor selection for 2024-T3 aluminium alloy assessed by high-throughput multielectrode and potentiodynamic testing. Electrochim. Acta 55(7), 2457–2465 (2010)

    CrossRef  Google Scholar 

  48. B.F. Gibbs et al., Encapsulation in the food industry: a review. Int. J. Food Sci. Nutr. 50(3), 213–224 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hughes, A.E., Mol, J.M.C., Zheludkevich, M.L., Buchheit, R.G. (2016). Introduction. In: Hughes, A., Mol, J., Zheludkevich, M., Buchheit, R. (eds) Active Protective Coatings. Springer Series in Materials Science, vol 233. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7540-3_1

Download citation