Advertisement

Non-native Seaweeds Drive Changes in Marine Coastal Communities Around the World

  • Mads Solgaard ThomsenEmail author
  • Thomas Wernberg
  • Paul M. South
  • David R. Schiel

Abstract

We conducted a bibliographic survey, adding 69 taxa to a published list of 277 seaweeds, thereby updating the total worldwide list of non-native and cryptogenic seaweeds to 346. Polysiphonia Greville and Hypnea J.V. Lamouroux species were the most common taxa on this list, and the Mediterranean Sea and the NE Atlantic bioregions have received most of the 346 taxa. The most important vectors that carry non-native seaweeds are hull fouling and the transport of aquaculture products including ‘blind passengers’. Once a seaweed has arrived in a new location, it can establish a permanent population and spread through natural dispersal or human activity. Non-native seaweeds have negative impacts on native species through competition, habitat destruction and keystone competition, but also positive impacts through habitat formation, food provision and cascading habitat formation. Quantitative meta-analyses have shown that invasive seaweeds typically have a negative effect on local plants, but neutral or positive effects on animal communities. New meta-analyses presented here indicate that impacts increase with the abundance of non-native seaweeds and that non-native seaweeds may increase sample similarity in invaded plant communities, but not in animal communities. The literature on the impact of non-native seaweeds is extensive, but most studies have focused on a few high-profile species. Comprehensive analyses should be done for more species to allow for better predictions. We conclude that non-native seaweeds have altered shallow coastal communities in most biogeographical regions, and impacts will likely increase along with increases in human populations, transport and associated stressors.

Keywords

Invasion impact Invasion success Meta-analysis New invasions Density-dependent effects Trophic matching hypothesis 

Notes

Acknowledgements

MST was supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. TW was supported by a Future Fellows grant from the Australian Research Council. DRS gratefully acknowledges the continued support by the New Zealand Ministry of Science and Innovation and the National Institute of Water and Atmospheric Research (contract C01X0501).

References

  1. Adam P. Saltmarsh ecology. Cambridge: Cambridge University Press; 1990. p. 461.CrossRefGoogle Scholar
  2. Alpert P. The advantages and disadvantages of being introduced. Biol Invasions. 2006;8(7):1523–34. doi: 10.1007/s10530-005-5844-z.CrossRefGoogle Scholar
  3. Altieri A, Trussell G, Ewanchuck P, Bernatchez G. Consumers control diversity and functioning of a natural marine ecosystem. PLoS Biol. 2009;4:e5291.Google Scholar
  4. Ambrose WG, Nelson BW. Inhibition of giant kelp recruitment by an introduced brown alga. Bot Mar. 1982;25:265–7.CrossRefGoogle Scholar
  5. Baker HG, Stebbens GL. The genetics of colonizing species. New York: Academic Press; 1965.Google Scholar
  6. Balata D, Piazzi L, Cinelli F. A comparison among assemblages in areas invaded by Caulerpa taxifolia and C. racemosa on a subtidal Mediterranean rocky bottom. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I. 2004;25(1):1–13. doi: 10.1111/j.1439-0485.2004.00013.x
  7. Baldwin JR, Lovvorn JR. Expansion of seagrass habitat by the exotic Zostera japonica, and its use by dabbling ducks and brant in Boundary Bay, British Colombia. Mar Ecol Prog Ser. 1994;103:119–27.CrossRefGoogle Scholar
  8. Barbier EB, Hacker SD, Kennedy CJ, Koch EW, Stier AC, Silliman BR. The value of estuarine and coastal ecosystem services. Ecol Monogr. 2011;81:169–93.CrossRefGoogle Scholar
  9. Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Sunday JM, Hill NA, Dulvy NK, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Change. 2014;26:27–38.CrossRefGoogle Scholar
  10. Bedini R, Bonechi L, Piazzi L. Mobile epifaunal assemblages associated with Cystoseira beds: comparison between areas invaded and not invaded by Lophocladia lallemandii. Scientia Marina. 2014;78(3):425–32. doi: 10.3989/scimar.03995.28B.CrossRefGoogle Scholar
  11. Bell SS. Amphipods as insect equivalents? An alternative view. Ecology. 1991;72:350–4.CrossRefGoogle Scholar
  12. Berkenbusch K, Rowden AA. An examination of the spatial and temporal generality of the influence of ecosystem engineers on the composition of associated assemblages. Aquat Ecol. 2007;41:129–47.CrossRefGoogle Scholar
  13. Berkenbusch K, Rowden AA, Myers TE. Interactions between seagrasses and burrowing ghost shrimps and their influence on infaunal assemblages. J Exp Mar Biol Ecol. 2007;341:70–84.CrossRefGoogle Scholar
  14. Blossey B, Notzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83(5):887–9. doi: 10.2307/2261425.CrossRefGoogle Scholar
  15. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. West Sussex, United Kingdom: Wiley; 2009. p. 421.CrossRefGoogle Scholar
  16. Boudouresque CF, Lemée R, Mari X, Meinesz A. The invasive alga Caulerpa taxifolia is not a suitable diet for the sea urchin Paracentrotus lividus. Aquat Bot. 1996;53:245–50.CrossRefGoogle Scholar
  17. Box A, Martin D, Deudero S. Changes in seagrass polychaete assemblages after invasion by Caulerpa racemosa var. cylindracea (Chlorophyta: Caulerpales): community structure, trophic guilds and taxonomic distinctness. Scientia Marina. 2010;74(2):317–29.CrossRefGoogle Scholar
  18. Britton-Simmons KH. Direct and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washinton State, USA. Mar Ecol Prog Ser. 2004;277:61–78.CrossRefGoogle Scholar
  19. Britton-Simmons KH. Functional group diversity, resource preemption and the genesis of invasion resistance in a community of marine algae. Oikos. 2006;113(3):395–401.CrossRefGoogle Scholar
  20. Britton-Simmons KH, Abbott KC. Short-and long-term effects of disturbance and propagule pressure on a biological invasion. J Ecol. 2008;96(1):68–77.CrossRefGoogle Scholar
  21. Bulleri F, Balata D, Bertocci I, Tamburello L, Benedetti-Cecchi L. The seaweed Caulerpa racemosa on Mediterranean rocky reefs: from passenger to driver of ecological change. Ecology. 2010;91(8):2205–12. doi: 10.1890/09-1857.1.PubMedCrossRefGoogle Scholar
  22. Buschbaum C, Chapman AS, Saier B. How an introduced seaweed can affect epibiota diversity in different coastal systems. Mar Biol. 2006;148(4):743–54. doi: 10.1007/s00227-005-0128-9.CrossRefGoogle Scholar
  23. Byers J, Wright JT, Gribben PE. Variable direct and indirect effects of a habitat-modifying invasive species on mortality of native fauna. Ecology. 2010;91:1787–98.PubMedCrossRefGoogle Scholar
  24. Byers JE, Gribben PE, Yeager C, Sotka EE. Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol Invasions. 2012;14(12):2587–600. doi: 10.1007/s10530-012-0254-5.CrossRefGoogle Scholar
  25. Cacabelos E, Olabarria C, Incera M, Troncoso JS. Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuar Coast Shelf Sci. 2010;89(1):43–52. doi: 10.1016/j.ecss.2010.05.012.CrossRefGoogle Scholar
  26. Cacabelos E, Engelen AH, Mejia A, Arenas F. Comparison of the assemblage functioning of estuary systems dominated by the seagrass Nanozostera noltii versus the invasive drift seaweed Gracilaria vermiculophylla. J Sea Res. 2012;72:99–105. doi: 10.1016/j.seares.2012.02.003.CrossRefGoogle Scholar
  27. Callaway RM, Ridenour WM. Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ. 2004;2:436–43.CrossRefGoogle Scholar
  28. Carlton JT, Eldredge LG. Update and revisions of the marine bioinvasions of Hawai‘i: the introduced and cryptogenic marine and estuarine animals and plants of the Hawaiian Archipelago. In: Lucius G Eldredge III Memorial Volume: Tribute to a Polymath. 2015. p. 25.Google Scholar
  29. Casas G, Scrosati R, Piriz ML. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Invasions. 2004;6(4):411–6. doi: 10.1023/b:binv.0000041555.29305.41.CrossRefGoogle Scholar
  30. Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypothesis into a single theoretical framework. Divers Distrib. 2009;15:22–40.CrossRefGoogle Scholar
  31. Cebrian E, Ballesteros E, Linares C, Tomas F. Do native herbivores provide resistance to Mediterranean marine bioinvasions? A seaweed example. Biol Invasions. 2011;13(6):1397–408. doi: 10.1007/s10530-010-9898-1.CrossRefGoogle Scholar
  32. Ceccherelli G, Campo D. Different effects of Caulerpa racemosa on two co-occuring seagrasses in the Mediterranean. Bot Mar. 2002;45:71–6.CrossRefGoogle Scholar
  33. Ceccherelli G, Cinelli F. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. J Exp Mar Biol Ecol. 1997;217:165–77.CrossRefGoogle Scholar
  34. Ceccherelli G, Sechi N. Nutrient availability in the sediment and the reciprocal effects between the native seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. Hydrobiologia. 2002;474:57–66.CrossRefGoogle Scholar
  35. Chen L, Zan Q, Li M, Shen J, Liao W. Litter dynamics and forest structure of the introduced Sonneratia caseolaris mangrove forest in Shenzhen, China. Estuar Coast Shelf Sci. 2009;85(2):241–6.CrossRefGoogle Scholar
  36. Colautti RI, Ricciardi A, Grigorovich LA, MacIsaac HJ. Is invasion success explained by the enemy release hypothesis? Ecol Lett. 2004;7:721–33.CrossRefGoogle Scholar
  37. Conklin KY, O’Doherty DC, Sherwood AR. Hydropuntia perplexa, n. comb. (Gracilariaceae, Rhodophyta), first record of the genus in Hawai’i. Pac Sci. 2014;68(3):421–34. doi: 10.2984/68.3.9.CrossRefGoogle Scholar
  38. Crawley MJ, Brown SL, Heard MS, Edwards GR. Invasion-resistance in experimental grassland communities: species richness or species identity? Ecol Lett. 1999;2(3):140–8.CrossRefGoogle Scholar
  39. Dale M. Phytosociological structure of seaweed communities and the invasion of Fucus serratus in Nova Scotia. Can J Bot. 1982;60(12):2652–8.CrossRefGoogle Scholar
  40. Davidson IC, Simkanin C. The biology of ballast water 25 years later. Biol Invasions. 2012;14:9–13.CrossRefGoogle Scholar
  41. Davis MA, Grime JP, Thompsen K. Fluctuating resources in plant communities: a general theory of invasibility. J Ecol. 2000;88:528–34.CrossRefGoogle Scholar
  42. Dayton PK. Towards an understanding of community resilience and the potential effects of enrichment to the benthos of McMurdo Sound, Antarctica. In: Proceedings of the colloquium on conservation problems in Antartica. 1972. pp. 81–96.Google Scholar
  43. Dean PR, Hurd CL. Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand1. J Phycol. 2007;43(6):1138–48.CrossRefGoogle Scholar
  44. Demopoulos AWJ, Smith CR. Invasive mangroves alter macrofaunal community structure and facilitate opportunistic exotics. Mar Ecol Prog Ser. 2010;404:51–67. doi: 10.3354/meps08483.CrossRefGoogle Scholar
  45. de Jesus PB, Silva MS, de Mattos Lyra G, de Castro Nunes JM, Schnadelbach AS. Extension of the distribution range of Hypnea stellulifera (Cystocloniaceae, Rhodophyta) to the South Atlantic: morphological and molecular evidence. Aquat Bot. 2014;123:26–36.CrossRefGoogle Scholar
  46. de Rivera CE, Ruiz GM, Hines AH, Jivoff P. Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology. 2005;86(12):3364–76. doi: 10.1890/05-0479.CrossRefGoogle Scholar
  47. de Villele X, Verlaque M. Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the North Western Mediterranean. Bot Mar. 1995;38(1):79–87.Google Scholar
  48. Díaz-Tapia P, Sook Kim M, Secilla A, Bárbara I, Cremades J. Taxonomic reassessment of Polysiphonia foetidissima (Rhodomelaceae, Rhodophyta) and similar species, including P. schneideri, a newly introduced species in Europe. Eur J Phycol. 2013;48(4):345–62. doi: 10.1080/09670262.2013.842655
  49. Dijoux L, Viard F, Payri C. The more we search, the more we find: discovery of a new lineage and a new species complex in the Genus Asparagopsis. PLoS ONE. 2014;9(7):e103826.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Drouin A, McKindsey CW, Johnson LE. Detecting the impacts of notorious invaders: experiments versus observations in the invasion of eelgrass meadows by the green seaweed Codium fragile. Oecologia. 2012;168(2):491–502. doi: 10.1007/s00442-011-2086-x.PubMedCrossRefGoogle Scholar
  51. Eastwood MM, Donahue MJ, Fowler AE. Reconstructing past biological invasions: niche shifts in response to invasive predators and competitors. Biol Invasions. 2007;9:397–407.CrossRefGoogle Scholar
  52. Eklöf JS, de la Torre Castro M, Adelsköld L, Jiddawi NS, Kautsky N. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar Coast Shelf Sci. 2005;63(3):385–96.CrossRefGoogle Scholar
  53. Elton CS (1958) The ecology of invasions by animals and plants. London: Mathuess; 1996.Google Scholar
  54. Emery SM. Limiting similarity between invaders and dominant species in herbaceous plant communities? J Ecol. 2007;95(5):1027–35. doi: 10.1111/j.1365-2745.2007.01274.x.CrossRefGoogle Scholar
  55. Enge S, Nylund GM, Pavia H. Native generalist herbivores promote invasion of a chemically defended seaweed via refuge-mediated apparent competition. Ecol Lett. 2013;16(4):487–92.PubMedCrossRefGoogle Scholar
  56. Engelen A, Henriques N, Monteiro C, Santos R. Mesograzers prefer mostly native seaweeds over the invasive brown seaweed Sargassum muticum. Hydrobiologia. 2011;669(1):157–65. doi: 10.1007/s10750-011-0680-x.CrossRefGoogle Scholar
  57. Engelen A, Primo A, Cruz T, Santos R. Faunal differences between the invasive brown macroalga Sargassum muticum and competing native macroalgae. Biol Invasions. 2013;15(1):171–83. doi: 10.1007/s10530-012-0276-z.CrossRefGoogle Scholar
  58. Englund G, Sarnelle O, Cooper SD. The importance of data-selection criteria: meta-analysis of stream predation experiments. Ecology. 1999;80:1132–41.CrossRefGoogle Scholar
  59. Eppinga MB, Rietkerk M, Dekker SC, De Ruiter PC, Van der Putten WH. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos. 2006;114(1):168–76. doi: 10.1111/j.2006.0030-1299.14625.x.CrossRefGoogle Scholar
  60. Falcao C, de Szechy MTM. Changes in shallow phytobenthic assemblages in southeastern Brazil, following the replacement of Sargassum vulgare (Phaeophyta) by Caulerpa scalpelliformis (Chlorophyta). Bot Mar. 2005;48:208–17.CrossRefGoogle Scholar
  61. Fitridge I, Dempster T, Guenther J, de Nys R. The impact and control of biofouling in marine aquaculture: a review. Biofouling. 2012;28(7):649–69.PubMedCrossRefGoogle Scholar
  62. Flagella MM, Verlaque M, Soria A, Buia MC. Macroalgal survival in ballast water tanks. Mar Pollut Bull. 2007;54(9):1395–401. doi: 10.1016/j.marpolbul.2007.05.015.PubMedCrossRefGoogle Scholar
  63. Flagella MM, Andreakis N, Hiraoka M, Verlaque M, Buia MC. Identification of cryptic Ulva species (Chlorophyta, Ulvales) transported by ballast water. J Biol Res Thessaloniki. 2010;13:47–57.Google Scholar
  64. Forrest BM, Taylor MD. Assessing invasion impact: survey design considerations and implications for management of an invasive marine plant. Biol Invasions. 2003;4:375–86.CrossRefGoogle Scholar
  65. Fourqurean JW, Smith TJ III, Possley J, Collins TM, Lee D, Namoff S. Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida. Biol Invasions. 2010;12(8):2509–22.CrossRefGoogle Scholar
  66. Fukunaga A, Peyton KA, Thomas FIM. Epifaunal community structure and ammonium uptake compared for the invasive algae, Gracilaria salicornia and Acanthophora specifera, and the native alga, Padina thivyi. J Exp Mar Biol Ecol. 2014;456:78–86. doi: 10.1016/j.jembe.2014.03.013.CrossRefGoogle Scholar
  67. Gallucci F, Hutchings P, Gribben P, Fonseca G. Habitat alteration and community-level effects of an invasive ecosystem engineer: a case study along the coast of NSW, Australia. Mar Ecol Prog Ser. 2012;449:95–108.CrossRefGoogle Scholar
  68. Gennaro P, Piazzi L. Synergism between two anthropic impacts: Caulerpa racemosa var. cylindracea invasion and seawater nutrient enrichment. Mar Ecol Prog Ser. 2011;427:59–70.CrossRefGoogle Scholar
  69. Gestoso I, Olabarria C, Troncoso JS. Variability of epifaunal assemblages associated with native and invasive macroalgae. Mar Freshw Res. 2010;61(6):724–31. doi: 10.1071/mf09251.CrossRefGoogle Scholar
  70. Gestoso I, Olabarria C, Troncoso J. Effects of macroalgal identity on epifaunal assemblages: native species vs the invasive species Sargassum muticum. Helgol Mar Res. 2012;66(2):159–66. doi: 10.1007/s10152-011-0257-0.CrossRefGoogle Scholar
  71. Glasby T. Caulerpa taxifolia in seagrass meadows: killer or opportunistic weed? Biol Invasions. 2012;1–19. doi: 10.1007/s10530-012-0347-1
  72. Gollan JR, Wright JT. Limited grazing pressure by native herbivores on the invasive seaweed Caulerpa taxifolia in a temperate Australian estuary. Mar Freshw Res. 2006;57:685–94.CrossRefGoogle Scholar
  73. Green DS, Boots B, Crowe TP. Effects of non-indigenous oysters on microbial diversity and ecosystem functioning. PLoS ONE. 2012;7(10):e48410.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Green D, Rocha C, Crowe T. Effects of non-indigenous oysters on ecosystem processes vary with abundance and context. Ecosystems. 2013;16:881–93. doi: 10.1007/s10021-013-9659-y.CrossRefGoogle Scholar
  75. Gribben PE, Wright JT. Sublethal effects on reproduction in native fauna: are females more vulnerable to biological invasion? Oecologia. 2006;149:352–61.PubMedCrossRefGoogle Scholar
  76. Gribben PE, Byers J, Clements M, McKenzie LA, Steinberg PD, Wright JT. Behavioural interactions between ecosystem engineers control community species richness. Ecol Lett. 2009a;12:1127–36.PubMedCrossRefGoogle Scholar
  77. Gribben PE, Wright JT, O’Connor WA, Doblin MA, Eyre B, Steinberg PD. Reduced performance of native infauna following recruitment to a habitat-forming invasive marine alga. Oecologia. 2009b;158:733–45.PubMedCrossRefGoogle Scholar
  78. Gribben PE, Byers JE, Wright JT, Glasby TM. Positive versus negative effects of an invasive ecosystem engineer on different components of a marine ecosystem. Oikos. 2013;122(6):816–24. doi: 10.1111/j.1600-0706.2012.20868.x.CrossRefGoogle Scholar
  79. Guerra-García JM, Ros M, Izquierdo D, Soler-Hurtado MM. The invasive Asparagopsis armata versus the native Corallina elongata: differences in associated peracarid assemblages. J Exp Mar Biol Ecol. 2012;416(417):121–8.CrossRefGoogle Scholar
  80. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, Agrosa C. A global map of human impact on marine ecosystems. Science. 2008;319:948–52.PubMedCrossRefGoogle Scholar
  81. Hammann M, Buchholz B, Karez R, Weinberger F. Direct and indirect effects of Gracilaria vermiculophylla on native Fucus vesiculosus. Aquat Invasions. 2013;8(2):121–32. doi: 10.3391/ai.2013.8.2.01.CrossRefGoogle Scholar
  82. Harries DB, Harrow S, Wilson JR, Mair JM, Donnan DW. The establishment of the invasive alga Sargassum muticum on the west coast of Scotland: a preliminary assessment of community effects. J Mar Biol Ass UK. 2007;87:1057–67.CrossRefGoogle Scholar
  83. Harris LG, Jones AC. Temperature, herbivory and epibiont acquisition as factors controlling the distribution and ecological role of an invasive seaweed. Biol Invasions. 2005;7:913–24.CrossRefGoogle Scholar
  84. Hay CH. The dispersal of sporophytes of Undaria pinnatifida by coastal shipping in New Zealand, and implications for further dispersal of Undaria in France. Brit Phycol J. 1990;25(4):301–13.CrossRefGoogle Scholar
  85. Hay M, Steinberg P. The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. Herbivores Interact Secondary Plant Metabolites. 1992;2:371–413.CrossRefGoogle Scholar
  86. Hewitt CL, Campbell ML, Schaffelke B. Introductions of seaweeds: accidental transfer pathways and mechanisms. Bot Mar. 2007;50(5–6):326–37. doi: 10.1515/bot.2007.038.Google Scholar
  87. Hierro JL, Maron JL, Callaway RM. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol. 2005;93:5–15.CrossRefGoogle Scholar
  88. Hoffman R, Shemesh E, Ramot M, Dubinsky Z, Pinchasov-Grinblat Y, Iluz D. First record of the Indo-Pacific seaweed Codium arabicum Kutz. (Bryopsidales, Chlorophyta) in the Mediterranean Sea. Bot Mar. 2011;54(5):487–495. doi: 10.1515/bot.2011.056.
  89. Hoffman R, Sternberg M, Serio D. First report of Laurencia chondrioides (Ceramiales, Rhodophyta) and its potential to be an invasive in the eastern Mediterranean Sea. Bot Mar. 2014;57(6):449–57. doi: 10.1515/bot-2014-0053.CrossRefGoogle Scholar
  90. Ibrahim AM, El-naggar MM. Ballast water review: impacts, treatments and management. Middle-East J Sci Res. 2012;12(7):976–84.Google Scholar
  91. Incera M, Bertocci I, Benedetti-Cecchi L. Effects of mean intensity and temporal variability of disturbance on the invasion of Caulerpa racemosa var. cylindracea (Caulerpales) in rock pools. Biol Invasions. 2010;12(3):501–14.CrossRefGoogle Scholar
  92. Inderjit Chapman D, Ranelletti M, Kaushik S. Invasive marine algae: an ecological perspective. Bot Rev. 2006;72(2):153–78. doi: 10.1663/0006-8101(2006)72[153:imaaep]2.0.co;2.CrossRefGoogle Scholar
  93. Irigoyen AJ, Trobbiani G, Sgarlatta MP, Raffo MP. Effects of the alien algae Undaria pinnatifida (Phaeophyceae, Laminariales) on the diversity and abundance of benthic macrofauna in Golfo Nuevo (Patagonia, Argentina): potential implications for local food webs. Biol Invasions. 2011;13(7):1521–32. doi: 10.1007/s10530-010-9910-9.CrossRefGoogle Scholar
  94. James K, Middleton I, Middleton C, Shears NT. Discovery of Undaria pinnatifida (Harvey) Suringar, 1873 in northern New Zealand indicates increased invasion threat in subtropical regions. BioInvasions Rec. 2014;3(1):21–4.CrossRefGoogle Scholar
  95. Jaubert JM, Chisholm JRM, Ducrot D, Ripley HT, Roy L, Passeron GS. No deleterious alterations in Posidonia beds in the Bay of Menton (France) eight years after Caulerpa taxifolia colonization. J Phycol. 1999;35:1113–9.CrossRefGoogle Scholar
  96. Jaubert JM, Chisholm JRM, Minghelli-Roman A, Marchioretti M, Morrow JH, Ripley HT. Re-evaluation of the extent of Caulerpa taxifolia development in the northern Mediterranean using airborne spectrographic sensing. Mar Ecol Prog Ser. 2003;263:75–82.CrossRefGoogle Scholar
  97. Johnson CR, Chapman ARO. Seaweed invasions: introduction and scope. Bot Mar. 2007;50(5–6):321–5. doi: 10.1515/bot.2007.037.Google Scholar
  98. Johnston CA, Lipcius RN. Exotic macroalga Gracilaria vermiculophylla provides superior nursery habitat for native blue crab in Chesapeake Bay. Mar Ecol Prog Ser. 2012;467:137–46. doi: 10.3354/meps09935.CrossRefGoogle Scholar
  99. Jones E, Thornber CS. Effects of habitat-modifying invasive macroalgae on epiphytic algal communities. Mar Ecol Prog Ser. 2010;400:87–100.CrossRefGoogle Scholar
  100. Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.CrossRefGoogle Scholar
  101. Jongma DN, Campo D, Dattolo E, D’Esposito D, Duchi A, Grewe P, Huisman J, Verlaque M, Yokes MB, Procaccini G. Identity and origin of a slender Caulerpa taxifolia strain introduced into the Mediterranean Sea. Bot Mar. 2013;56(1):27–39. doi: 10.1515/bot-2012-0175.CrossRefGoogle Scholar
  102. Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. TREE. 2002;17:164–70.Google Scholar
  103. Klein J, Verlaque M. The Caulerpa racemosa invasion: a critical review. Mar Pollut Bull. 2008;56(2):205–25. doi: 10.1016/j.marpolbul.2007.09.043.PubMedCrossRefGoogle Scholar
  104. Klein JC, Verlaque M. Experimental removal of the invasive Caulerpa racemosa triggers partial assemblage recovery. J Mar Biol Assoc UK. 2011;91(1):117–25. doi: 10.1017/s0025315410000792.CrossRefGoogle Scholar
  105. Krauss KW, Allen JA. Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii. Aquat Bot. 2003;77(4):311–24.CrossRefGoogle Scholar
  106. Lang AC, Buschbaum C. Facilitative effects of introduced Pacific oysters on native macroalgae are limited by a secondary invader, the seaweed Sargassum muticum. J Sea Res. 2010;63(2):119–28. doi: 10.1016/j.seares.2009.11.002.CrossRefGoogle Scholar
  107. Levin PS, Coyer JA, Petrik R, Good TP. Community-wide effects of nonindigenous species on temperate rocky reefs. Ecology. 2002;83(11):3182–93. doi: 10.2307/3071852.CrossRefGoogle Scholar
  108. Lockwood JL, Cassey P, Blackburn T. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib. 2009;15:904–10.CrossRefGoogle Scholar
  109. Lutz M, Davis A, Minchinton T. Non-indigenous macroalga hosts different epiphytic assemblages to conspecific natives in southeast Australia. Mar Biol. 2010;157(5):1095–03. doi: 10.1007/s00227-010-1391-y.CrossRefGoogle Scholar
  110. Maggi E, Benedetti-Cecchi L, Castelli A, Chatzinikolaou E, Crowe TP, Ghedini G, Kotta J, Lyons DA, Ravaglioli C, Rilov G, Rindi L, Bulleri F. Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. Divers Distrib. 2015;21(1):1–12. doi: 10.1111/ddi.12264.CrossRefGoogle Scholar
  111. Maggs CA, Gall LL, Mineur F, Provan J, Saunders GW. Fredericqia deveauniensis, gen. et sp. nov. (Phyllophoraceae, Rhodophyta), a new cryptogenic species. Cryptogam Algologie. 2013;34(3):273–296.Google Scholar
  112. Mateu-Vicens G, Box A, Deudero S, Rodriguez B. Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass Posidonia oceanica and invasive macroalgae Caulerpa spp. J Foramin Res. 2010;40(2):134–47.CrossRefGoogle Scholar
  113. Mazariegos-Villareal A, Riosmena-Rodríguez R, Rosa Rivera-Camacho A, Serviere-Zaragoza E. First report of Cladostephus spongiosus (Sphacelariales: Phaeophyta) from the Pacific coast of Mexico. Bot Mar. 2010;53(2):153–7.CrossRefGoogle Scholar
  114. McKinnon JG, Gribben PE, Davis AR, Jolley DF, Wright JT. Differences in soft-sediment macrobenthic assemblages invaded by Caulerpa taxifolia compared to uninvaded habitats. Mar Ecol Prog Ser. 2009;380:59–71. doi: 10.3354/meps07926.CrossRefGoogle Scholar
  115. Meinesz A. Killer algae—the true tale of a biological invasion. Chicago: The University of Chicago Press; 1999. p. 360.Google Scholar
  116. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos L, Moore K, Yokomizo H. Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett. 2007;10:77–97.PubMedCrossRefGoogle Scholar
  117. Micael J, Parente MI, Costa AC. Tracking macroalgae introductions in North Atlantic oceanic Islands. Helgol Mar Res. 2014;68(2):209–19. doi: 10.1007/s10152-014-0382-7.CrossRefGoogle Scholar
  118. Mineur F, Johnson MP, Maggs CA, Stegenga H. Hull fouling on commercial ships as a vector of macroalgal introduction. Mar Biol. 2007;151(4):1299–307.CrossRefGoogle Scholar
  119. Mineur F, Johnson MP, Maggs CA. Macroalgal introductions by hull fouling on recreational vessels: seaweeds and sailors. Environ Manage. 2008a;42(4):667–76. doi: 10.1007/s00267-008-9185-4.PubMedCrossRefGoogle Scholar
  120. Mineur F, Johnson MP, Maggs CA. Non-indigenous marine macroalgae in native communities: a case study in the British Isles. J Mar Biol Assoc UK. 2008b;88(4):693–8. doi: 10.1017/s0025315408001409.CrossRefGoogle Scholar
  121. Mineur F, De Clerck O, Le Roux A, Maggs CA, Verlaque M. Polyopes lancifolius (Halymeniales, Rhodophyta), a new component of the Japanese marine flora introduced to Europe. Phycologia. 2009;49(1):86–96. doi: 10.2216/09-45.1.CrossRefGoogle Scholar
  122. Mineur F, Le Roux A, Stegenga H, Verlaque M, Maggs CA. Four new exotic red seaweeds on European shores. Biol Invasions. 2012;14(8):1635–41. doi: 10.1007/s10530-012-0186-0.CrossRefGoogle Scholar
  123. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vazquez DP. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.PubMedCrossRefGoogle Scholar
  124. Monteiro C, Engelen AH, Santos RO. Macro- and mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Mar Biol. 2009;156:2505–15.CrossRefGoogle Scholar
  125. Morita T, Kurashima A, Maegawa M. Temperature requirements for the growth and maturation of the gametophytes of Undaria pinnatifida and U. undarioides (Laminariales, Phaeophyceae). Phycol Res. 2003;51(3):154–60.Google Scholar
  126. Neira C, Levin LA, Grosholz ED, Mendoza G. Influence of invasive Spartina growth stages on associated macrofaunal communities. Biol Invasions. 2007;9(8):975–93. doi: 10.1007/s10530-007-9097-x.CrossRefGoogle Scholar
  127. Nejrup LB, Pedersen MF. Growth and biomass development of the introduced red alga Gracilaria vermiculophylla is unaffected by nutrient limitation and grazing. Aquat Biol. 2010;10(3):249–59. doi: 10.3354/ab00281.CrossRefGoogle Scholar
  128. Nejrup L, Pedersen M, Vinzent J. Grazer avoidance may explain the invasiveness of the red alga Gracilaria vermiculophylla in Scandinavian waters. Mar Biol. 2012;159(8):1703–12. doi: 10.1007/s00227-012-1959-9.CrossRefGoogle Scholar
  129. Nyberg CD, Thomsen MS, Wallentinus I. Flora and fauna associated with the introduced red alga Gracilaria vermiculophylla. Eur J Phycol. 2009;44(3):395–403. doi: 10.1080/09670260802592808.CrossRefGoogle Scholar
  130. Nylund GM, Weinberger F, Rempt M, Pohnert G. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS ONE. 2011;6(12):e29359.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Odom RL, Walters LJ. A safe alternative to invasive Caulerpa taxifolia (Chlorophtya)? Assessing aquarium-release invasion potential of aquarium strains of the macroalgal genus Chaetomorpha (Chlorophyta). Biol Invasions. 2014;16(8):1589–97.CrossRefGoogle Scholar
  132. Olabarria C, Arenas F. Understanding biological invasions by seaweeds. Mar Algae Biodiver Taxonomy Environ Assess Biotechnol. 2014;140.Google Scholar
  133. Olabarria C, Rodil IF, Incera M, Troncoso JS. Limited impact of Sargassum muticum on native algal assemblages from rocky intertidal shores. Mar Environ Res. 2009;67(3):153–8. doi: 10.1016/j.marenvres.2008.12.007.PubMedCrossRefGoogle Scholar
  134. Ostenfeld CH. On the immigration of Biddulphia sinensis Grev. and its occurrence in the North Sea during 1903–1907 and on its use for the study of the direction and rate of flow of the currents. Meddelelser fra Kommissionen for Danmarks Fiskeri- og Havundersøgelser: Serie Plankton. 1908;6:1–44.Google Scholar
  135. Pacciardi L, De Biasi AM, Piazzi L. Effects of Caulerpa racemosa invasion on soft-bottom assemblages in the Western Mediterranean Sea. Biol Invasions. 2011;13(12):2677–90. doi: 10.1007/s10530-011-9938-5.CrossRefGoogle Scholar
  136. Padilla DK, Williams SL. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ. 2004;2(3):131–8.CrossRefGoogle Scholar
  137. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham MJ, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JL, Goldwasser L. Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions. 1999;1:3–19.CrossRefGoogle Scholar
  138. Parker DJ, Burkepile DE, Hay ME. Opposing effects of native and exotic herbivores on plant invasion. Science. 2006;311:1459–61.PubMedCrossRefGoogle Scholar
  139. Pedersen MF, Stæhr PA, Wernberg T, Thomsen M. Biomass dynamics of exotic Sargassum muticum and native Halidrys siliquosa in Limfjorden, Denmark—implications of species replacements on turnover rates. Aquat Bot. 2005;83:31–47.CrossRefGoogle Scholar
  140. Peteiro C, Sánchez N. Comparing salinity tolerance in early stages of the sporophytes of a non-indigenous kelp (Undaria pinnatifida) and a native kelp (Saccharina latissima). Russ J Mar Biol. 2012;38(2):197–200.CrossRefGoogle Scholar
  141. Piazzi L, Balata D. The spread of Caulerpa racemosa var. cylindracea in the Mediterranean Sea: an example of how biological invasions can influence beta diversity. Mar Environ Res. 2008;65(1):50–61.PubMedCrossRefGoogle Scholar
  142. Piazzi L, Balata D. Invasion of alien macroalgae in different Mediterranean habitats. Biol Invasions. 2009;11(2):193–204. doi: 10.1007/s10530-008-9224-3.CrossRefGoogle Scholar
  143. Piazzi L, Ceccherelli G. Persistence of biological invasion effects: recovery of macroalgal assemblages after removal of Caulerpa racemosa var. cylindracea. Estuar Coast Shelf Sci. 2006;68(3–4):455–61. doi: 10.1016/j.ecss.2006.02.011.CrossRefGoogle Scholar
  144. Piazzi L, Cinelli F. Evaluation of benthic macroalgal invasion in a harbour area of the western Mediterranean Sea. Eur J Phycol. 2003;38(3):223–31. doi: 10.1080/1364253031000136358.CrossRefGoogle Scholar
  145. Piazzi L, Balata D, Cinelli F. Epiphytic macroalgal assemblages of Posidonia oceanica rhizomes in the western Mediterranean. Eur J Phycol. 2002;37(1):69–76. doi: 10.1017/s0967026201003432.CrossRefGoogle Scholar
  146. Piazzi L, Balata D, Cecchi E, Cinelli F. Co-occurrence of Caulerpa taxifolia and C. racemosa in the Mediterranean Sea: interspecific interactions and influence on native macroalgal assemblages. Cryptogamie Algologie. 2003;24(3):233–43.Google Scholar
  147. Piazzi L, Balata D, Ceccherelli G, Cinellia F. Interactive effect of sedimentation and Caulerpa racemosa var. cylindracea invasion on macroalgal assemblages in the Mediterranean Sea. Estuar Coast Shelf Sci. 2005;64:467–74.CrossRefGoogle Scholar
  148. Pickering TD, Skelton P, Sulu RJ. Intentional introductions of commercially harvested alien seaweeds. Bot Mar. 2007;50(5–6):338–50. doi: 10.1515/bot.2007.039.Google Scholar
  149. Pochon X, Atalah J, Wood SA, Hopkins GA, Watts A, Boedeker C. Cladophora ruchingeri (C. Agardh) Kützing, 1845 (Cladophorales, Chlorophyta): a new biofouling pest of green-lipped mussel Perna canaliculus (Gmelin, 1791) farms in New Zealand; 2015.Google Scholar
  150. Posey MH. Community changes associated with the spread of an introduced seagrass, Zostera Japonica. Ecology. 1988;69:974–83.CrossRefGoogle Scholar
  151. Procheş Ş, Wilson JRU, Richardson DM, Rejmánek M. Searching for phylogenetic pattern in biological invasions. Glob Ecol Biogeogr. 2008;17(1):5–10. doi: 10.1111/j.1466-8238.2007.00333.x.Google Scholar
  152. Rempt M, Weinberger F, Grosser K, Pohnert G. Conserved and species-specific oxylipin pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis and the invasive Gracilaria vermiculophylla. Beilstein J Org Chem. 2012;8(1):283–9.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Ren H, Lu H, Shen W, Huang C, Guo Q, Za Li, Jian S. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: an invasive species or restoration species? Ecol Eng. 2009;35(8):1243–8.CrossRefGoogle Scholar
  154. Reynolds LK, Carr LA, Boyer KE. A non-native amphipod consumes eelgrass inflorescences in San Francisco Bay. Mar Ecol Prog Ser. 2012;451:107–18. doi: 10.3354/meps09569.CrossRefGoogle Scholar
  155. Ricciardi A, Simberloff D. Assisted colonization is not a viable conservation strategy. Trends Ecol Evol. 2009;24(5):248–53.PubMedCrossRefGoogle Scholar
  156. Rodil IF, Olabarria C, Lastra M, Lopez J. Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches. J Exp Mar Biol Ecol. 2008;358(1):1–13. doi: 10.1016/j.jembe.2007.12.030.CrossRefGoogle Scholar
  157. Rosenberg MS, Adams DC, Gurevitch J. Metawin: statistical software for meta-analysis, vol Version 2. Massachusetts: Sinauer Associates; 2000.Google Scholar
  158. Rueness J. Sargassum muticum and other introduced Japanese macroalgae: biological pollution of European coasts. Mar Pollut Bull. 1989;20:173–6.CrossRefGoogle Scholar
  159. Ruesink JL, Hong JS, Wisehart L, Hacker SD, Dumbauld BR, Hessing-Lewis M, Trimble AC. Congener comparison of native (Zostera marina) and introduced (Z. japonica) eelgrass at multiple scales within a Pacific Northwest estuary. Biol Invasions. 2010;12(6):1773–89. doi: 10.1007/s10530-009-9588-z.CrossRefGoogle Scholar
  160. Ruiz GM, Torchin ME, Grant K. Using the Panama Canal to test predictions about tropical marine invasions. In: Proceedings of the Smithsonian Marine Science Symposium; 2009. pp. 291–299.Google Scholar
  161. Russell DJ. Introduction of alien seaweeds to Hawaii. Phycologia. 1981;20(2):112.Google Scholar
  162. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand N, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG. The population biology of invasive species. Annu Rev Ecol Syst. 2001;32:305–32.CrossRefGoogle Scholar
  163. Sánchez I, Fernández C. Impact of the invasive seaweed Sargassum muticum (Phaeophyta) on an intertidal macroalgal assemblage. J Phycol. 2005;41:923–30.CrossRefGoogle Scholar
  164. Sánchez I, Fernández C, Arrontes J. Long-term changes in the structure of intertidal assemblages after invasion by Sargassum muticum (Phaeophyta). J Phycol. 2005;41:942–9.CrossRefGoogle Scholar
  165. Sandler R. The value of species and the ethical foundations of assisted colonization. Conserv Biol. 2010;24(2):424–31. doi: 10.1111/j.1523-1739.2009.01351.x.PubMedCrossRefGoogle Scholar
  166. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings H, Holt RD, Mayfield MM, O’Connor MI, Rice WR. Ecological and evolutionary insights from species invasions. Trends Ecol Evol. 2007;22:465–71.PubMedCrossRefGoogle Scholar
  167. Schaffelke B, Hewitt CL. Impacts of introduced seaweeds. Bot Mar. 2007;50:397–417.CrossRefGoogle Scholar
  168. Schaffelke B, Smith JE, Hewitt CL. Introduced macroalgae—a growing concern. J Appl Phycol. 2006;18(3–5):529–41. doi: 10.1007/s10811-006-9074-2.CrossRefGoogle Scholar
  169. Scheibling RE, Anthony SX. Feeding, growth and reproduction of sea urchins (Strongylocentrotus droebachiensis) on single and mixed diets of kelp (Laminaria spp.) and the invasive alga Codium fragile spp. tometosoides. Mar Biol. 2001;139:139–46.CrossRefGoogle Scholar
  170. Scheibling RE, Lyons DA, Sumi CBT. Grazing of the invasive alga Codium fragile ssp. tomentosoides by the common periwinkle Littorina littorea: effects of thallus size, age and condition. J Exp Mar Biol Ecol. 2008;355(2):103–13. doi: 10.1016/j.jembe.2007.12.002.CrossRefGoogle Scholar
  171. Schiel DR, Thompson GA. Demography and population biology of the invasive kelp Undaria pinnatifida on shallow reefs in southern New Zealand. J Exp Mar Biol Ecol. 2012;434:25–33.CrossRefGoogle Scholar
  172. Schmidt AL, Scheibling RE. A comparison of epifauna and epiphytes on native kelps (Laminaria species) and an invasive alga (Codium fragile ssp. tomentosoides) in Nova Scotia, Canada. Bot Mar. 2006;49:315–330.Google Scholar
  173. Schmidt AL, Scheibling RE. Effects of native and invasive macroalgal canopies on composition and abundance of mobile benthic macrofauna and turf-forming algae. J Exp Mar Biol Ecol. 2007;341:110–30.CrossRefGoogle Scholar
  174. Seddon PJ. From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restor Ecol. 2010;18(6):796–802. doi: 10.1111/j.1526-100X.2010.00724.x.CrossRefGoogle Scholar
  175. Sher AA, Hyatt LA. The disturbed resource-flux invasion matrix: a new framework for patterns of plant invasions. Biol Invasions. 1999;1:107–14.CrossRefGoogle Scholar
  176. Simberloff D, Von Holle B. Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions. 1999;1:21–32.CrossRefGoogle Scholar
  177. Sissini MN, Longo GO, Martins CDL, Floeter SR, Pereira SB, Horta PA. First record of the green alga Halimeda (Bryopsidales: Chlorophyta) at Rocas Atoll—natural dispersion or anthropogenic causes? Mar Biodivers Rec. 2014;7:e104.CrossRefGoogle Scholar
  178. Sjotun K, Eggereide SF, Hoisaeter T. Grazer-controlled recruitment of the introduced Sargassum muticum (Phaeophycae, Fucales) in Northern Europe. Mar Ecol Prog Ser. 2007;342:127–38.CrossRefGoogle Scholar
  179. Smith JR, Vogt SC, Creedon F, Lucas BJ, Eernisse DJ. The non-native turf-forming alga Caulacanthus ustulatus displaces space-occupants but increases diversity. Biol Invasions. 2014;16(10):2195–208. doi: 10.1007/s10530-014-0658-5.CrossRefGoogle Scholar
  180. South PM, Lilley S, Tait LW, Alestra T, Hickford MJH, Thomsen MS, Schiel DR. Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Marine and Freshwater Research MF14152. 2015. Accepted 14 Aug 2014.Google Scholar
  181. Staehr PA, Pedersen MF, Thomsen MS, Wernberg T, Krause-Jensen D. Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Mar Ecol Prog Ser. 2000;207:79–88.CrossRefGoogle Scholar
  182. Strong JA, Dring MJ, Maggs CA. Colonisation and modification of soft substratum habitats by the invasive macroalga Sargassum muticum. Mar Ecol Prog Ser. 2006;321:87–97.CrossRefGoogle Scholar
  183. Tait LW, South PM, Lilley SA, Thomsen MS, Schiel DR. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J Exp Mar Biol Ecol. 2015;469:10–7. doi: 10.1016/j.jembe.2015.04.007.CrossRefGoogle Scholar
  184. Tamburello L, Maggi E, Benedetti-Cecchi L, Bellistri G, Rattray AJ, Ravaglioli C, Rindi L, Roberts J, Bulleri F. Variation in the impact of non-native seaweeds along gradients of habitat degradation: a meta-analysis and an experimental test. 2015. Oikos:n/a-n/a. doi: 10.1111/oik.02197
  185. Taylor SL, Bishop MJ, Kelaher BP, Glasby TM. Impacts of detritus from the invasive alga Caulerpa taxifolia on a soft sediment community. Mar Ecol Prog Ser. 2010;420:73–81.CrossRefGoogle Scholar
  186. Thomsen MS. Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquat Invasions. 2010;5(4):341–6. doi: 10.3391/ai.2010.5.4.02.CrossRefGoogle Scholar
  187. Thomsen MS, McGlathery K. Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. J Exp Mar Biol Ecol. 2006;328(1):22–34. doi: 10.1016/j.jembe.2005.06.016.CrossRefGoogle Scholar
  188. Thomsen MS, McGlathery KJ. Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biol Invasions. 2007;9(5):499–513. doi: 10.1007/s10530-006-9043-3.CrossRefGoogle Scholar
  189. Thompson GA, Schiel DR. Resistance and facilitation by native algal communities in the invasion success of Undaria pinnatifida. Mar Ecol Prog Ser. 2012;468:95.CrossRefGoogle Scholar
  190. Thomsen MS, Wernberg T. The devil in the detail: harmful seaweeds are not harmful to everyone. Global Change Biology. 2015;21(4):1381–2.Google Scholar
  191. Thomsen MS, Gurgel CFD, Fredericq S, McGlathery KJ. Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: a cryptic alien and invasive macroalga and taxonomic correction. J Phycol. 2006a;42(1):139–41. doi: 10.1111/j.1529-8817.2005.00160.x.CrossRefGoogle Scholar
  192. Thomsen MS, Wernberg T, Stæhr PA, Pedersen MF. Spatio-temporal distribution patterns of the invasive macroalga Sargassum muticum within a Danish Sargassum-bed. Helgol Mar Res. 2006b;60:50–8.CrossRefGoogle Scholar
  193. Thomsen MS, Stæhr P, Nyberg CD, Krause-Jensen D, Schwærter S, Silliman B. Gracilaria vermiculophylla in Northern Europe, with focus on Denmark, and what to expect in the future. Aquat Invasions. 2007;2:83–94.CrossRefGoogle Scholar
  194. Thomsen MS, Adam P, Silliman B. Anthropogenic threats to Australasian coastal salt marshes. In: Silliman BR, Bertness MD, Strong D, editors. Anthropogenic modification of North American salt marshes. California: University of California Press; 2009a. pp. 361–390.Google Scholar
  195. Thomsen MS, Wernberg T, Tuya F, Silliman BR. Evidence for impacts of non-indigenous macroalgae: a meta-analysis of experimental field studies. J Phycol. 2009b;45:812–9.CrossRefGoogle Scholar
  196. Thomsen MS, Wernberg T, Altieri AH, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol. 2010;50(2):158–75. doi: 10.1093/icb/icq042.PubMedCrossRefGoogle Scholar
  197. Thomsen MS, Olden JD, Wernberg T, Griffin JN, Silliman BR. A broad framework to organize and compare ecological invasion impacts. Environ Res. 2011a;111:899–908.PubMedCrossRefGoogle Scholar
  198. Thomsen MS, Wernberg T, Olden JD, Griffin JN, Silliman BR. A framework to study the context-dependent impacts of marine invasions. J Exp Mar Biol Ecol. 2011b;400(1–2):322–7. doi: 10.1016/j.jembe.2011.02.033.CrossRefGoogle Scholar
  199. Thomsen MS, Wernberg T, Engelen AH, Tuya F, Vanderklift MA, Holmer M, McGlathery KJ, Arenas F, Kotta J, Silliman BR. A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS ONE. 2012;7(1):e28595.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Thomsen MS, Byers JE, Schiel DR, Bruno JF, Olden JD, Wernberg T, Silliman BR. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar Ecol Prog Ser. 2014;495:39–47. doi: 10.3354/meps10566.CrossRefGoogle Scholar
  201. Thomsen MS, Wernberg T, Schiel DR. Invasions by non-indigenous species. In: Crowe TP, Frid CLJ, editors. Marine ecosystems: human impacts on biodiversity, functioning and services. Cambridge: Cambridge University Press; 2015. p. 274–332.CrossRefGoogle Scholar
  202. Thornber CS, Kinlan BP, Graham MH, Stachowicz JJ. Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. Mar Ecol Prog Ser. 2004;268:69–80.CrossRefGoogle Scholar
  203. Tomas F, Box A, Terrados J. Effects of invasive seaweeds on feeding preference and performance of a keystone Mediterranean herbivore. Biol Invasions. 2011a;13(7):1559–70. doi: 10.1007/s10530-010-9913-6.CrossRefGoogle Scholar
  204. Tomas F, Cebrian E, Ballesteros E. Differential herbivory of invasive algae by native fish in the Mediterranean Sea. Estuar Coast Shelf Sci. 2011b;92(1):27–34.CrossRefGoogle Scholar
  205. Trowbridge CD. Ecology of the green macroalga Codium fragile (Suringar) Hariot 1889: invasive and non-invasive subspecies. Oceanogr Mar Biol. 1998;36:1–64.Google Scholar
  206. Trowbridge CD. Local elimination of Codium fragile ssp. tomentosoides: indirect evidence of sacoglossan herbivory. J Mar Biol Ass UK. 2002;82:1029–30.CrossRefGoogle Scholar
  207. Trowbridge CD, Todd CD. Host-plant change in marine specialist herbivores: ascoglossan sea slugs on introduced Macroalgae. Ecol Monogr. 2001;71:219–43.CrossRefGoogle Scholar
  208. Trussell G, Ewanchuck P, Bertness MD. Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecol Lett. 2002;5:241–5.CrossRefGoogle Scholar
  209. Trussell G, Ewanchuk P, Bertness MD, Silliman BR. Trophic cascades in rocky shore tide pools: distinguishing lethal and non-lethal effects. Oecologia. 2004;139:427–32.PubMedCrossRefGoogle Scholar
  210. Tsai C, Yang S, Trimble AC, Ruesink JL. Interactions betweem two introduced species: Zostera japonica (dwarf eelgrass) facilitates itself and reduces condition of Ruditapes philippinarum (Manila clam) on intertidal mudflats. Mar Biol. 2010;157:1929–36.CrossRefGoogle Scholar
  211. Tsiamis K, Verlaque M. A new contribution to the alien red macroalgal flora of Greece (Eastern Mediterranean) with emphasis on Hypnea species. Cryptogamie Algologie. 2011;32(4):393–410.CrossRefGoogle Scholar
  212. Valentine JP, Johnson CR. Establishment of the introduced kelp Undaria pinnatifida in Tasmania depends on disturbance to native algal assemblages. J Exp Mar Biol Ecol. 2003;295(1):63–90. doi: 10.1016/s0022-0981(03)00272-7.CrossRefGoogle Scholar
  213. Valentine JP, Johnson CR. Establishment of the introduced kelp Undaria pinnatifida following dieback of the native macroalga Phyllospora comosa in Tasmania, Australia. Mar Freshw Res. 2004;55(3):223–30. doi: 10.1071/mf03048.CrossRefGoogle Scholar
  214. Valentine JP, Magierowski RH, Johnson CR. Mechanisms of invasion: establishment, spread and persistence of introduced seaweed populations. Bot Mar. 2007;50(5–6):351–60. doi: 10.1515/bot.2007.040.Google Scholar
  215. Vaz-Pinto F, Olabarria C, Arenas F. Propagule pressure and functional diversity: interactive effects on a macroalgal invasion process. Mar Ecol Prog Ser. 2012;471:51–60. doi: 10.3354/meps10024.CrossRefGoogle Scholar
  216. Vázquez-Luis M, Borg JA, Sanchez-Jerez P, Bayle-Sempere JT. Habitat colonisation by amphipods: comparison between native and alien algae. J Exp Mar Biol Ecol. 2012;432–433:162–70.CrossRefGoogle Scholar
  217. Verges A, Sanchez N, Peteiro C, Polo L, Brodie J. Pyropia suborbiculata (Bangiales, Rhodophyta): first records from the northeastern Atlantic and Mediterranean of this North Pacific species. Phycologia. 2013;52(2):121–9. doi: 10.2216/12-003.1.CrossRefGoogle Scholar
  218. Verlaque M, Steen F, De Clerck O. Rugulopteryx (Dictyotales, Phaeophyceae), a genus recently introduced to the Mediterranean. Phycologia. 2009;48(6):536–42.CrossRefGoogle Scholar
  219. Viejo RM. Mobile epifauna inhabiting the invasive Sargassum muticum and two local seaweeds in northern Spain. Aquat Bot. 1999;64:131–49.CrossRefGoogle Scholar
  220. Wallentinus I, Nyberg CD. Introduced marine organisms as habitat modifiers. Mar Pollut Bull. 2007;55:323–32.PubMedCrossRefGoogle Scholar
  221. Warwick RM, Clarke KR. Increased variability as a symptom of stress in marine communities. J Exp Mar Biol Ecol. 1993;172:215–26.CrossRefGoogle Scholar
  222. Wassman R, Ramus J. Seaweed invasion. Nat Hist. 1973;82(10):25.Google Scholar
  223. Wernberg T, Thomsen MS, Stæhr PA, Pedersen MF. Comparative phenology of Sargassum muticum and Halidrys siliquosa (Phaeophyceae: Fucales) in Limfjorden, Denmark. Bot Mar. 2001;44:31–9. doi: 10.1515/BOT.2001.005.CrossRefGoogle Scholar
  224. Wernberg T, Thomsen MS, Staerh PA, Pedersen MF. Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgol Mar Res. 2004;58:154–61.CrossRefGoogle Scholar
  225. White LF, Shurin JB. Density dependent effects of an exotic marine macroalga on native community structure. J Exp Mar Biol Ecol. 2011;405:111–9.CrossRefGoogle Scholar
  226. Willette DA, Ambrose RF. The distribution and expansion of the invasive seagrass Halophila stipulacea in Dominica, West Indies, with a preliminary report from St.Lucia. Aquat Bot. 2009;91(3):137–42.CrossRefGoogle Scholar
  227. Willette DA, Ambrose RF. Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquat Bot. 2012;103:74–82.CrossRefGoogle Scholar
  228. Williams SL. Introduced species in seagrass ecosystems: status and concerns. J Exp Mar Biol Ecol. 2007;350(1–2):89–110. doi: 10.1016/j.jembe.2007.05.032.CrossRefGoogle Scholar
  229. Williams SL, Grosholz ED. The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuaries Coasts. 2008;31(1):3–20.CrossRefGoogle Scholar
  230. Williams SL, Smith JE. A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annu Rev Ecol Evol Syst. 2007;38:327–59. doi: 10.1146/annurev.ecolsys.38.091206.095543
  231. Williams SL, Davidson IC, Pasari JR, Ashton GV, Carlton JT, Crafton RE, Fontana RE, Grosholz ED, Miller AW, Ruiz GM. Managing multiple vectors for marine invasions in an increasingly connected world. Bioscience. 2013;63(12):952–66.CrossRefGoogle Scholar
  232. Wolf MA, Sfriso A, Andreoli C, Moro I. The presence of exotic Hypnea flexicaulis (Rhodophyta) in the Mediterranean Sea as indicated by morphology, rbcL and cox1 analyses. Aquat Bot. 2011;95(1):55–8. doi: 10.1016/j.aquabot.2011.02.009.CrossRefGoogle Scholar
  233. Wolf MA, Sfriso A, Moro I. Thermal pollution and settlement of new tropical alien species: the case of Grateloupia yinggehaiensis (Rhodophyta) in the Venice Lagoon. Estuar Coast Shelf Sci. 2014;147:11–6. doi: 10.1016/j.ecss.2014.05.020.CrossRefGoogle Scholar
  234. Wright JT, Gribben PE. Predicting the impact of an invasive seaweed on the fitness of native fauna. J Appl Ecol. 2008;45:1540–9.CrossRefGoogle Scholar
  235. Wright JT, McKenzie LA, Gribben PE. A decline in the abundance and condition of a native bivalve associated with Caulerpa taxifolia invasion. Mar Freshw Res. 2007;58:263–72.CrossRefGoogle Scholar
  236. Wu YT, Wang CH, Zhang XD, Zhao B, Jiang LF, Chen JK, Li B. Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets. Biol Invasions. 2009;11(3):635–49. doi: 10.1007/s10530-008-9279-1.CrossRefGoogle Scholar
  237. York PH, Booth DJ, Glasby TM, Pease BC. Fish assemblages in habitats dominated by Caulerpa taxifolia and native seagrasses in south-eastern Australia. Mar Ecol Prog Ser. 2006;312:223–34.CrossRefGoogle Scholar
  238. Zenetos A, Gofas S, Verlaque M, Çinar ME, Garcia Raso J, Bianchi C, Morri C, Azzurro E, Bilecenoglu M, Froglia C. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterr Mar Sci. 2010;11:381–493.Google Scholar
  239. Zenetos A, Gofas S, Morri C, Rosso A, Violanti D, Raso JEG, Cinar ME, Almogi-Labin A, Ates AS, Azzurro E, Ballesteros E, Bianchi CN, Bilecenoglu M, Gambi MC, Giangrande A, Gravili C, Hyams-Kaphzan O, Karachle PK, Katsanevakis S, Lipej L, Mastrototaro F, Mineur F, Pancucci-Papadopoulou MA, Espla AR, Salas C, San Martin G, Sfriso A, Streftaris N, Verlaque M. Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr Mar Sci. 2012;13(2):328–52.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Mads Solgaard Thomsen
    • 1
    • 2
    • 3
    Email author
  • Thomas Wernberg
    • 3
    • 4
  • Paul M. South
    • 1
  • David R. Schiel
    • 1
  1. 1.Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.Centre of Integrative Ecology, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  3. 3.UWA Oceans Institute, School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  4. 4.Australian Institute of Marine ScienceCrawleyAustralia

Personalised recommendations