Advertisement

The Dynamic Biogeography of the Anthropocene: The Speed of Recent Range Shifts in Seaweeds

  • Sandra C. Straub
  • Mads Solgaard Thomsen
  • Thomas WernbergEmail author

Abstract

The biogeographic boundaries of seaweeds are largely determined by temperature tolerances, physical barriers and limitations to dispersal. Anthropogenic ocean warming and increasing connectivity through human activities are now causing rapid changes in the biogeography of seaweeds. Globally, at least 346 non-native seaweed taxa have been introduced to new regions, and at least 31 species of seaweed have shifted their distributions in response to recent temperature changes. Range-shift speeds were determined for 40 taxa, and compared between three drivers: (I) range expansions caused by introductions, (II) range expansions and (III) contractions caused by climate change (warming/cooling). The speed of change in seaweed biogeography differed between these drivers of change, with expansions significantly faster than contractions, and climate-driven shifts significantly slower than introductions. Some of the best documented introduced species expansions include Sargassum muticum (4.4 km/year in Denmark), Undaria pinnatifida (35–50 km/year in Argentina) and Caulerpa cylindracea (11.9 km/year in the Mediterranean Sea). Examples of seaweeds with recent climate-driven range shifts include Scytothalia dorycarpa, a native species in Western Australia, which retracted >100 km poleward as a consequence of a single event (a regional marine heat wave). However, climate-driven range shifts were generally assessed over long time periods (>10 years). Fucus serratus (1.7 km/year) and Himanthalia elongata (4.4 km/year) have slowly retracted westwards in northern Spain in response to warming in the Bay of Biscay. In England and South Africa, Laminaria ochroleuca (5.4 km/year) and Ecklonia maxima (36.5 km/year) have expanded their ranges in response to local warming and cooling, respectively. These changes in seaweed biogeography likely have had substantial implications for biodiversity and ecosystem processes, particularly where the shifting seaweeds have been canopy-forming foundation species. We discuss some of these consequences and different attributes of climate and invasion-driven range shifts in seaweeds.

Keywords

Climate change Dispersal Invasive species Range contraction Range expansion Seaweed distribution 

Notes

Acknowledgements

This work was supported by the University of Western Australia through an International Postgraduate Research Scholarship to SS and a research collaboration award to TW, the Australian Research Council through a Future Fellowship (FT110100174) to TW. MST was supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand.

References

  1. Adey WH, Steneck RS. Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol. 2001;37:677–98.CrossRefGoogle Scholar
  2. Aguilar-Rosas R, Aguilar-Rosas LE, Avila G, Marcos R. First record of Undaria pinnatifida (Harvey) Suringar (Laminariales,Phaeophyta) on the Pacific coast of Mexico. Bot Mar. 2004;47:255–58.Google Scholar
  3. Altamirano M, Andreakis N, Souza-egipsy V, Zanolla M, De la Rosa J. First record of Caulerpa cylindracea (Caulerpaceae , Chlorophyta) in Andalusia (Southern Spain). An del Jardín Botánico Madrid. 2014;71:1–9.Google Scholar
  4. Anderson RJ, Bolton JJ, Stegenga H. Using the biogeographical distribution and diversity of seaweed species to test the efficacy of marine protected areas in the warm-temperate Agulhas Marine Province, South Africa. Divers Distrib. 2009;15:1017–27.CrossRefGoogle Scholar
  5. Aplikioti M, Louizidou P, Mystikou A, Marcou M, Stavrou P, Kalogirou S, et al. Further expansion of the alien seaweed Caulerpa taxifolia var. distichophylla (Sonder) Verlaque, Huisman & Procacini (Ulvophyceae, Bryopsidales) in the Eastern Mediterranean Sea. Aquat Invasions. 2016;11:in press.Google Scholar
  6. Arrontes J. Mechanisms of range expansion in the intertidal brown alga Fucus serratus in northern Spain. Mar Biol. 2002;141:1059–67.Google Scholar
  7. Assis J, Serrão EA, Claro B, Pearson GA. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol Ecol. 2014;23:2797–810.PubMedCrossRefGoogle Scholar
  8. Baldacconi R, Corriero G. Effects of the spread of the alga Caulerpa racemosa var. cylindracea on the sponge assemblage from coralligenous concretions of the Apulian coast (Ionian Sea, Italy). Mar Ecol. 2009;30:337–45.Google Scholar
  9. Bartsch I, Wiencke C, Laepple T. Global seaweed biogeography under a changing climate: the prospected effects of temperature. In: Wiencke C, Bischof K, editors. Seaweed biology. Berlin Heidelberg: Springer; 2012. p. 383–406.CrossRefGoogle Scholar
  10. Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Sunday JM, Hill NA, Dulvy NK, Colwell RK, Holbrook NJ, Fulton EA, Slawinski D, Feng M, Edgar GJ, Radford BT, Thompson PA, Watson RA. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Change. 2014;26:27–38.CrossRefGoogle Scholar
  11. Bates AE, Bird TJ, Stuart-smith RD, Wernberg T, Sunday JM, Barrett NS, Edgar GJ, Frusher S, Hobday AJ, Pecl GT, Smale DA, McCarthy M. Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Divers Distrib. 2015;21:13–22.CrossRefGoogle Scholar
  12. Bennett S, Wernberg T, Connell SD, Hobdav AJ, Johnson CR, Poloczanska ES. The “Great Southern Reef”: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshwater Res. 2015a. doi: 10.1071/MF15232.Google Scholar
  13. Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett. 2015b;18:714–23.PubMedCrossRefGoogle Scholar
  14. Björck S. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int. 1995;27:19–40.CrossRefGoogle Scholar
  15. Bolton JJ. Global seaweed diversity: patterns and anomalies. Bot Mar. 1994;37:241–6.CrossRefGoogle Scholar
  16. Bolton JJ. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res. 2010;64:263–79.CrossRefGoogle Scholar
  17. Bolton J, Anderson R, Smit A, Rothman M. South African kelp moving eastwards: the discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south coast of South Africa. African J Mar Sci. 2012;34:147–51.CrossRefGoogle Scholar
  18. Burridge CP, Hurt AC, Farrington LW, Coutin PC, Austin CM. Stepping stone gene flow in an estuarine dwelling sparid from south east Australia. J Fish Biol. 2004;64:805–19.CrossRefGoogle Scholar
  19. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ. The pace of shifting climate in marine and terrestrial ecosystems. Science. 2011;334:652–5.PubMedCrossRefGoogle Scholar
  20. Buschbaum C, Chapman AS, Saier B. How an introduced seaweed can affect epibiota diversity in different coastal systems. Mar Biol. 2006;148:743–54.CrossRefGoogle Scholar
  21. Byrnes JE, Reed DC, Cardinale BJ, Cavanaugh KC, Holbrook SJ, Schmitt RJ. Climate-driven increases in storm frequency simplify kelp forest food webs. Glob Change Biol. 2011;17:2513–24.CrossRefGoogle Scholar
  22. Casas G, Scrosati R, Luz Piriz M. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Invasions. 2004;6:411–6.CrossRefGoogle Scholar
  23. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009;10:235–51.CrossRefGoogle Scholar
  24. Christie H, Norderhaug KM, Fredriksen S. Macrophytes as habitat for fauna. Mar Ecol Prog Ser. 2009;396:221–33.CrossRefGoogle Scholar
  25. Coumou D, Rahmstorf S. A decade of weather extremes. Nat Clim Change. 2012;2:491–6.Google Scholar
  26. Cowman PF, Bellwood DR. Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers. Proc R Soc B. 2013;280:20131541.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Dellatorre FG, Amoroso R, Saravia J, Orensanz (Lobo) JM. Rapid expansion and potential range of the invasive kelp Undaria pinnatifida in the Southwest Atlantic. Aqua Invasions. 2014;9(4):467–78.CrossRefGoogle Scholar
  28. Dethier MN, McDonald K, Strathmann RR. Colonization and connectivity of habitat patches for coastal marine species distant from source populations. Conserv Biol. 2003;17:1024–35.CrossRefGoogle Scholar
  29. Duarte L, Viejo RM, Martínez B, deCastro M, Gomez-Gesteira M, Gallardo T. Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecologica. 2013;51:1–10.CrossRefGoogle Scholar
  30. Engelen AH, Serebryakova A, Ang P, Britton-Simmons K, Mineur F, Pedersen MF, Toth G. Circumglobal invasion by the brown seaweed Sargassum muticum. Oceanogr Mar Biol Ann Rev. 2015; 53:81–126.Google Scholar
  31. Espinoza J. The Southern Limit of Sargassum muticum (Yendo) Fensholt (Phaeophyta, Fucales) in the Mexican Pacific. Bot Mar. 1990;33:193–96.Google Scholar
  32. Fraser CI, Waters JM. Algal parasite Herpodiscus durvillaeae (Phaeophyceae: Sphacelariales) inferred to have traversed the Pacific Ocean with its buoyant host. J Phycol. 2013;49:202–6.CrossRefGoogle Scholar
  33. Fraser CI, Nikula R, Waters JM. Oceanic rafting by a coastal community. Proc R Soc B. 2011;278:649–55.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Gaylord B, Gaines SD. Temperature or transport? Range limits in marine species mediated solely by flow. Am Nat. 2000;155:769–89.PubMedCrossRefGoogle Scholar
  35. Gaylord B, Reed DC, Raimondi PT, Washburn L, McLean SR. A physically based model of macroalgal spore dispersal in the wave and current-dominant nearshore. Ecology. 2002;83:1239–51.CrossRefGoogle Scholar
  36. Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol. 2012;27:47–55.PubMedCrossRefGoogle Scholar
  37. Graham MH. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems. 2004;7:341–57.CrossRefGoogle Scholar
  38. Grigg R, Hey R. Paleoceanography of the tropical eastern Pacific Ocean. Science. 1992;255:172–8.PubMedCrossRefGoogle Scholar
  39. Hampe A, Petit R. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett. 2005;8:461–7.PubMedCrossRefGoogle Scholar
  40. Harley CDG, Hughes AR, Hulgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Willams SL. The impacts of climate change in coastal marine systems. Ecol Lett. 2006;9:228–41.PubMedCrossRefGoogle Scholar
  41. Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH. Effects of climate change on global seaweed communities. J Phycol. 2012;48:1064–78.CrossRefGoogle Scholar
  42. Hawkins S, Hartnoll R. Factors determining the upper limits of intertidal canopy-forming algae. Mar Ecol Prog Ser. 1985;20:265–71.CrossRefGoogle Scholar
  43. Hidas EZ, Costa TL, Ayre DJ, Minchinton TE. Is the species composition of rocky intertidal invertebrates across a biogeographic barrier in south-eastern Australia related to their potential for dispersal? Mar Freshwater Res. 2007;58:835–42.CrossRefGoogle Scholar
  44. Hinojosa IA, Pizarro M, Ramos M, Thiel M. Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Estu Coast Shelf Sci. 2010;87:367–77.CrossRefGoogle Scholar
  45. Hobday AJ. Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J Exp Mar Bio Ecol. 2000a;253:97–114.PubMedCrossRefGoogle Scholar
  46. Hobday AJ. Persistence and transport of fauna on drifting kelp (Macrocystis pyrifera (L.) C. Agardh) rafts in the Southern California Bight. J Exp Mar Bio Ecol. 2000b;253:75–96.PubMedCrossRefGoogle Scholar
  47. Hobday AJ, Pecl GT. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fish. 2013;24:415–25.CrossRefGoogle Scholar
  48. Hofmann LC, Straub S, Bischof K. Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser. 2012;464:89–105.CrossRefGoogle Scholar
  49. Ingólfsson A. The invasion of the intertidal canopy-forming alga Fucus serratus L. to southwestern Iceland: possible community effects. Estu Coast Shelf Sci. 2008;77:484–90.CrossRefGoogle Scholar
  50. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation.Google Scholar
  51. IPCC (2014) Climate change 2014 synthesis report summary chapter for policymakers.Google Scholar
  52. Irving AD, Connell SD. Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae. Oecologia. 2006;148:491–502.PubMedCrossRefGoogle Scholar
  53. Johnson L, Brawley S, Adey W. Secondary spread of invasive species: historic patterns and underlying mechanisms of the continuing invasion of the European rockweed Fucus serratus in eastern. Biol Invasions. 2012;14:79–97.Google Scholar
  54. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Bio Ecol. 2011;400:17–32.CrossRefGoogle Scholar
  55. Karl T, Trenberth K. Modem global climate change. Science. 2003;302:1719–23.PubMedCrossRefGoogle Scholar
  56. Kerswell AP. Global biodiversity patterns of benthic marine algae. Ecology. 2006;87:2479–88.PubMedCrossRefGoogle Scholar
  57. Klein J, Verlaque M. The Caulerpa racemosa invasion: a critical review. Mar Pollut Bull. 2008;56:205–25.PubMedCrossRefGoogle Scholar
  58. Lessios HA, Kessing BD, Robertson DR. Massive gene flow across the world’s most potent marine biogeographic barrier. Proc R Soc B. 1998;265:583–8.PubMedCentralCrossRefGoogle Scholar
  59. Lima FP, Wethey DS. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun. 2012;3:1–13.CrossRefGoogle Scholar
  60. Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM. Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Chang Biol. 2007;13:2592–604.Google Scholar
  61. Lima FP, Queiroz N, Ribeiro PA, Xavier R, Hawkins SJ, Santos AM. First record of Halidrys siliquosa on the Portuguese coast: counter-intuitive range expansion? Mar Biodivers Rec. 2008; doi: 10.1017/S1755267208000018.Google Scholar
  62. Ling SD. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia. 2008;156:883–94.PubMedCrossRefGoogle Scholar
  63. Ling SD, Johnson CR, Frusher SD, Ridgway KR. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc Nat Acad Sci USA. 2009;106:2234–22345.CrossRefGoogle Scholar
  64. Lozano-Montes HM, Loneragan NR, Babcock RC, Jackson K. Using trophic flows and ecosystem structure to model the effects of fishing in the Jurien Bay Marine Park, temperate Western Australia. Mar Freshwater Res. 2011;62(5):421–31.CrossRefGoogle Scholar
  65. Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc B. 2012;279:1033–40.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Lüning K. Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. In: 1st ed. Stuttgart New York: Georg Thieme Verlag; 1985.Google Scholar
  67. Macaya EC, Pacheco S, Cáceres A, Musleh S. Range extension of the non-indigenous alga Mastocarpus sp. along the Southeastern Pacific coast. Rev Biol Mar Oceanogr. 2013; 48:661–65.Google Scholar
  68. Madin EMP, Ban NC, Doubleday ZA, Holmes TH, Pecl GT, Smith F. Socio-economic and management implications of range-shifting species in marine systems. Glob Environ Change. 2012;22:137–46.CrossRefGoogle Scholar
  69. Marcelino VR, Verbruggen H. Ecological niche models of invasive seaweeds. J Phycol. 2015;51:606–20.CrossRefGoogle Scholar
  70. Mathieson AC, Dawes CJ, Pederson J, Gladych RA, Carlton JT. The Asian red seaweed Grateloupia turuturu (Rhodophyta) invades the Gulf of Maine. Biol Invasions. 2008;10:985–88.Google Scholar
  71. Mattio L, Zubia M, Maneveldt GW, Anderson RJ, Bolton JJ, de Gaillande C, De Clerck O, Payri CE. Marine flora of the Iles Eparses (Scattered Islands): a longitudinal transect through the Mozambique Channel. Acta Oecologica. 2015. doi: 10.1016/j.actao.2015.09.001.Google Scholar
  72. Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Willamson P, Hardman-Mountford NJ, et al. Changes in the range of some common rocky shore species in Britain - A response to climate change? Hydrobiologia. 2006;555:241–51.Google Scholar
  73. Millar AJ. The Flindersian and Peronian Provinces. Algae Aust Introd. 2007:554–59.Google Scholar
  74. Molinos JG, Halpern BS, Schoeman DS, Brown CJ, Kiessling W, Moore PJ, Pandolfi JM, Poloczanska ES, Richardson AJ, Burrows MT. Climate velocity and the future global redistribution of marine biodiversity. Nat Clim Change. 2015. doi: 10.1038/nclimate2769.Google Scholar
  75. Myers AA. Biogeographic barriers and the development of marine biodiversity. Estu Coast Shelf Sci. 1997;44:241–8.CrossRefGoogle Scholar
  76. Neill PE, Alcalde O, Faugeron S, Navarrete SA, Correa JA. Invasion of Codium fragile ssp. tomentosoides in northern Chile: A new threat for Gracilaria farming. Aquaculture. 2006;259:202–210.Google Scholar
  77. Neiva J, Assis J, Coelho NC, Fernandes F, Pearson GA, Serräo EA. Genes left behind: climate change threatens cryptic genetic diversity in the canopy-forming seaweed Bifurcaria bifurcata. PLoS One. 2015;10:e0131530.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Neiva J, Serrão EA, Assis J, Pearson GA, Coyer JA, Olsen JL, Hoarau G, Valero M. Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Berlin Heidelberg: Springer; 2016.Google Scholar
  79. Newton C, Bracken MES, McConville M, Rodrigue K, Thornber CS. Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the Western North Atlantic Ocean. PLoS One. 2013;8(4):e62261.Google Scholar
  80. Nicastro KR, Zardi GI, Teixeira S, Neiva J, Serrao EA, Pearson GA. Shift happens : trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol. 2013;11:6.Google Scholar
  81. Nogales M, Heleno R, Traveset A, Vargas P. Evidence for overlooked mechanisms of long-distance seed dispersal to and between oceanic islands. New Phytol. 2012;194:313–7.PubMedCrossRefGoogle Scholar
  82. Norton TA. Dispersal by macroalgae. Br Phycol J. 1992;27:293–301.CrossRefGoogle Scholar
  83. Ortegón-aznar I, Rosado-espinosa LA, Aguilar-perera A. Occurrence of the introduced alga Caulerpa ollivieri Dostál, 1929 (Caulerpaceae, Chlorophyta) in the Southern Gulf of Mexico. BioInvasions Rec. 2015;4:17–21.Google Scholar
  84. Pedersen MF, Staehr PA, Wernberg T, Thomsen MS. Biomass dynamics of exotic Sargassum muticum and native Halidrys siliquosa in Limfjorden, Denmark—implications of species replacements on turnover rates. Aquat Bot. 2005;83:31–47.CrossRefGoogle Scholar
  85. Perry AL, Low PJ, Ellis JR, Reynolds JD. Climate change and distribution shifts in marine fishes. Science. 2005;308:1912–5.PubMedCrossRefGoogle Scholar
  86. Piazzi L, Balata D, Ceccherelli G, Cinelli F. Interactive effect of sedimentation and Caulerpa racemosa var. cylindracea invasion on macroalgal assemblages in the Mediterranean Sea. Estu Coast Shelf Sci. 2005;64:467–74.CrossRefGoogle Scholar
  87. Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. Marine taxa track local climate velocities. Science. 2013;341:1239–42.PubMedCrossRefGoogle Scholar
  88. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ. Global imprint of climate change on marine life. Nat Clim Change. 2013;3:919–25.CrossRefGoogle Scholar
  89. Provan J, Maggs CA. Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc R Soc B. 2012;279:39–47.PubMedCentralPubMedCrossRefGoogle Scholar
  90. Quartino ML, Deregibus D, Campana GL, Juan Latorre GE, Momo FR. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One. 2013;8(3):e58223.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Riosmena-Rodríguez R, Boo GH, López-Vivas JM, Hernandez-Velasco A, Saenz-Arroyo A, Boo SM. The invasive seaweed Sargassum filicinum (Fucales, Phaeophyceae) is on the move along the Mexican Pacific coastline. Bot Mar. 2012;55:547–51.Google Scholar
  92. Rothäusler E, Gutow L, Thiel M. Floating seaweeds and their communities. In: Wiencke C, Bischof K, editors. Seaweed biology. Berlin: Springer; 2012. p. 359–80.CrossRefGoogle Scholar
  93. Ruitton S, Javel F, Culioli J-M, Meinesz A, Pergent G, Verlaque M. First assessment of the Caulerpa racemosa (Caulerpales, Chlorophyta) invasion along the French Mediterranean coast. Mar Pollut Bull. 2005;50:1061–8.PubMedCrossRefGoogle Scholar
  94. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Marker IM, Thompson JN, Weller SG. The population biology of invasive species. Ann Rev Ecol Syst. 2001;32:305–32.CrossRefGoogle Scholar
  95. Santelices B. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Ann Rev. 1990;28:177–276.Google Scholar
  96. Scheibling RE, Gagnon P. Competitive interactions between the invasive green alga Codium fragile ssp. tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Mar Ecol Prog Ser. 2006;325:1–14.Google Scholar
  97. Schils T, Wilson SC. Temperature threshold as a biogeographic barrier in northern Indian ocean macroalgae. J Phycol. 2006;42:749–56.CrossRefGoogle Scholar
  98. Simon C, Ar GE, Deslandes E. Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia. 2001;443:23–29.Google Scholar
  99. Smale DA, Wernberg T. Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc B. 2013;280:20122829.PubMedCentralPubMedCrossRefGoogle Scholar
  100. Smale DA, Wernberg T, Yunnie ALE, Vance T. The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar Ecol. 2014. doi: 10.1111/maec.12199.Google Scholar
  101. Smit AJ, Roberts M, Anderson RJ, Dufois F, Dudley SFJ, Bornan TG, Olbers J, Bolton JJ. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS One. 2013.Google Scholar
  102. Sorte CJB, Williams SL, Carlton JT. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr. 2010;19:303–16.CrossRefGoogle Scholar
  103. Sorte CJB, Ibáñez I, Blumenthal DM, Molinri NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett. 2013;16:261–70.PubMedCrossRefGoogle Scholar
  104. Stæhr PA, Pedersen MF, Thomsen MS, Wernberg T, Krause-Jensen D. Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Mar Ecol Prog Ser. 2000;207:79–88.CrossRefGoogle Scholar
  105. Stewart HL. The role of spatial and ontogenetic morphological variation in the expansion of the geographic range of the tropical brown alga, Turbinaria ornata. Integr Comp Biol. 2008;48:713–19.Google Scholar
  106. Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N, Holbrook NJ, Edgar GJ, Stuart-Smith R, Barrett N, Wernberg T, Watson RA, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Thompson PA, Bates AE. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett. 2015;18:944–53.PubMedCrossRefGoogle Scholar
  107. Tait LW, South PM, Lilley SA, Thompsen MS, Schiel DR. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J Exp Mar Bio Ecol. 2015;469:10–7.CrossRefGoogle Scholar
  108. Takao S, Kumagai NH, Yamano H, Fujii M, Yamanaka Y. Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios. Ecol Evol. 2015;5:213–23.PubMedCentralPubMedCrossRefGoogle Scholar
  109. Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M. Warming off southwestern japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol Evol. 2012;2:2854–65.PubMedCentralPubMedCrossRefGoogle Scholar
  110. Terazono Y, Nakamura Y, Imoto Z, Hiraoka M. Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar Ecol Prog Ser. 2012;464:209–20.CrossRefGoogle Scholar
  111. Thomsen MS, Wernberg T, Tuya F, Silliman BR. Evidence for impacts of nonindigenous macroalgae: a meta-analysis of experimental field studies. J Phycol. 2009;45:812–9.CrossRefGoogle Scholar
  112. Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol. 2010;50(2):158–75.PubMedCrossRefGoogle Scholar
  113. Thomsen MS, Wernberg T, Olden JD, Griffin GN, Silliman BR. A framework to study the context-dependent impacts of marine invasions. J Exp Mar Bio Ecol. 2011;400:322–7.CrossRefGoogle Scholar
  114. Thomsen MS, Wernberg T, Olden JD, Byers JE, Bruno JF, Silliman BR, Schiel DR. Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts? NeoBiota. 2014;22:1–22.CrossRefGoogle Scholar
  115. Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Vanden Berghe E, Worm B. Global patterns and predictors of marine biodiversity across taxa. Nature. 2010;466:1098–101.PubMedCrossRefGoogle Scholar
  116. Tuya F, Wernberg T, Thomsen MS. Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environ Biol Fishes. 2009;86:311–9.CrossRefGoogle Scholar
  117. Van den Hoek C. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc. 1982;18:81–144.CrossRefGoogle Scholar
  118. Van den Hoek C. The possible significance of long-range dispersal for the biogeography of seaweeds. Helgol Meeresun. 1987;41:261–72.CrossRefGoogle Scholar
  119. Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, Gurgel CFD, De Clerk O. Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS One. 2013;8:e68337.PubMedCentralPubMedCrossRefGoogle Scholar
  120. Wallentinus I. Alien species alert: Undaria pinnatifida (Wakame or japanese kelp). ICES Cooperation Research Report No. 283. Copenhagen: International Council for the Exploration of the Sea; 2007.Google Scholar
  121. Watanabe S, Scheibling RE, Metaxas A. Contrasting patterns of spread in interacting invasive species: Membranipora membranacea and Codium fragile off Nova Scotia. Biol Invasions. 2010;12:2329–342.Google Scholar
  122. Waters JM. Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Divers Distrib. 2008;14:692–700.CrossRefGoogle Scholar
  123. Waters JM, Fraser CI, Hewitt GM. Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol. 2013;28:78–85.PubMedCrossRefGoogle Scholar
  124. Wernberg T, Kendrick GA, Phillips JC. Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia. Divers Distrib. 2003;9:427–41.CrossRefGoogle Scholar
  125. Wernberg T, Thomsen MS, Staehr PA, Pedersen MF. Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgol Mar Res. 2004;58:154–61.CrossRefGoogle Scholar
  126. Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD. Seaweed communities in retreat from ocean warming. Curr Biol. 2011a;21:1828–32.PubMedCrossRefGoogle Scholar
  127. Wernberg T, Russell BDBD, Moore PJPJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Bio Ecol. 2011b;400:7–16.CrossRefGoogle Scholar
  128. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettgnies T, Bennett S, Rousseaux CS. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change. 2013a;3:78–82.CrossRefGoogle Scholar
  129. Wernberg T, Thomsen MS, Connell SD, Russell BD, Waters JM, Zuccarello GC, Kraft GT, Sanderson C, West JA, Gurgel CFD. The footprint of continental-scale ocean currents on the biogeography of seaweeds. PLoS One. 2013b;8(11):e80186.CrossRefGoogle Scholar
  130. Wiens JJ. The niche, biogeography and species interactions. Phil Trans R Soc B. 2011;366:2336–50.PubMedCentralPubMedCrossRefGoogle Scholar
  131. Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol Evol. 2005;19(12):639–44.CrossRefGoogle Scholar
  132. Williams SL, Smith JE. A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Ann Rev Ecol Evol Syst. 2007;38:327–59.CrossRefGoogle Scholar
  133. Wootton JT. Local interactions predict large-scale pattern in empirically derived cellular automata. Nature. 2001;413:841–4.PubMedCrossRefGoogle Scholar
  134. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787–90.PubMedCrossRefGoogle Scholar
  135. York KL, Blacket MJ, Appleton BR. The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian intertidal barnacle Catomerus polymerus (Darwin). Mol Ecol. 2008;17:1948–61.PubMedCrossRefGoogle Scholar
  136. Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sandra C. Straub
    • 1
  • Mads Solgaard Thomsen
    • 1
    • 2
    • 3
  • Thomas Wernberg
    • 1
    Email author
  1. 1.UWA Oceans Institute and School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  2. 2.Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  3. 3.Centre of Integrative Ecology, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations