Skip to main content

Phylogeography of Macroalgal Species Distributed in Brackish Water: Ulva prolifera (Ulvophyceae) and Pyropia tenera (Bangiophyceae)

  • Chapter
  • First Online:

Abstract

Comparative studies of closely related species or populations in contrasting environments can potentially provide insights into adaptive mechanisms. We review the phylogeography and population diversity of brackish water species derived from marine species, Ulva prolifera Müller (Ulvophyceae) and Pyropia tenera (Kjellman) N. Kikuchi, M. Miyata, M.S. Hwang & H.G. Choi (Bangiophyceae). Brackish U. prolifera and marine Ulva linza L. have been resolved as closely related species based on phylogenetic analysis of moleclar markers, with U. linza apparently parental to U. prolifera. Our analyses of 5S rDNA spacer region in samples from an Ulvalean bloom in Qingdao, China, indicate that the species appear to be derived from Japanese U. prolifera. Hybridization tests suggest that U. linza and the Qingdao bloom samples are probably distinct species, but gene flow is possible between them. The threatened brackish water species, P. tenera, is morphologically and phylogenetically related to the coastal species, Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi. One form, P. yezoensis Ueda f. narawaensis Miura (new combination “Pyropia yezoensis f. narawaensis” has not yet been proposed), is the largest aquaculture source of “Nori” in Japan. Hybridization between these species has been reported, especially between male P. tenera and female P. yezoensis. Sequences of the nrITS1 region and rbcL gene, and PCR-RFLP (ARP4 gene) analyses suggested that P. tenera is distributed across 15 prefectures from Kyushu to Tohoku in Japan; but is restricted to estuarine and brackish water habitats. Based on SSR analysis on the genetically identified P. tenera samples, we conclude that this species spread from Kyushu to Tohoku through the Kanto region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • BBC NEWS. 2008. http://news.bbc.co.uk/2/hi/asia-pacific/7486814.stm.

  • Brodie J, Maggs CA, John DM. Green seaweeds of Britain and Ireland. London: British Phycological Society; 2007. p. 242.

    Google Scholar 

  • Burrow EM (1991) Seaweeds of the British Isles, vol 2: chlorophyta. London: British Museum (Natural History), p. 238.

    Google Scholar 

  • Canter-Lund H, Lund JWG. Freshwater algae. Their microscopic world explored. Bristol: Biopress; 1995.

    Google Scholar 

  • Davey JW, Biaxter ML. RADseq: next-generation population genetics. Brief Funct Genom. 2010;9:416–23.

    Article  CAS  Google Scholar 

  • Earl D, von Holdt B. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2012;4:359–61.

    Article  Google Scholar 

  • Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107:1–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Environment Agency of Japan. In: Threatened wildlife of Japan. Red data book, 2nd ed. 2000.

    Google Scholar 

  • Fletcher RT. The occurrence of “green tide”. In: Schramm W, Nienhuis PH, editors. Marine benthic vegetation—recent changes and the effects of eutrophication. Berlin: Springer; 1996. p. 7–43.

    Chapter  Google Scholar 

  • Guiry M, Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. 2015. http://www.algaebase.org; Accessed 21 Jan 2015.

  • Hiraoka M, Oka N. Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. J Appl Phycol. 2008;20:97–102.

    Article  Google Scholar 

  • Hiraoka M, Shimada S. Biology of a special green laver, Ulva prolifera from the Shimanto River. Aquabiology. 2004;26:508–15.

    Google Scholar 

  • Hiraoka M, Dan A, Shimada S, Hagihira M, Migita M, Ohno M. Different life histories of Enteromorpha prolifera (Ulvales, Chlorophyta) from four rivers on Shikoku Island, Japan. Phycologia. 2003;42:275–84.

    Article  Google Scholar 

  • Hiraoka M, Ichihara K, Zhu W, Ma J, Shimada S. Culture and hybridization experiments on an Ulva clade including the Qingdao strains blooming in the Yellow sea. PLoS ONE. 2011;6(5):e19371.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horimoto R, Masakiyo Y, Ichihara K, Shimada S. Enteromorpha-like Ulva (Ulvophyceae, Chlorophyta) growing in the Todoroki river, Ishigaki island, Japan, with special reference to Ulva meridionalis Horimoto et Shimada sp. nov. Bull Nat Sci Mus. 2011;37:155–67.

    Google Scholar 

  • Ichihara K, Arai S, Uchimura M, Fay EJ, Ebata H, Hiraoka M, Shimada S. New species of freshwater Ulva, Ulva limnetica (Ulvales, Ulvophyceae) from Ryukyu archipelago, Japan. Phycol Res. 2009a;57:94–103.

    Article  Google Scholar 

  • Ichihara K, Arai S, Shimada S. cDNA cloning of a lectin-like gene preferentially expressed in freshwater from the macroalga Ulva limnetica (Ulvales, Chlorophyta). Phycol Res. 2009b;57:104–10.

    Article  CAS  Google Scholar 

  • Ichihara K, Mineur F, Shimada S. Isolation and temporal expression analysis of freshwater-induced genes in Ulva limnetica (Ulvales, Chlorophyta). J Phycol. 2011;47:584–90.

    Article  CAS  Google Scholar 

  • Ichihara K, Miyaji K, Shimada S. Comparing the low-salinity tolerance of Ulva species distributed in different environments. Phycol Res. 2013;61:52–7.

    Article  CAS  Google Scholar 

  • Iwasaki T, Sase T, Takeda S, Ohsawa TA, Ozaki K, Tani N, Ikeda H, Suzuki M, Endo R, Tohei K, Watano Y. Extensive selfing in an endangered population of Pinus parviflora var. parviflora (Pinaceae) in the Boso hills, Japan. Tree Genet Genomes. 2013;9:693–705.

    Article  Google Scholar 

  • Jeratthitikul E, Hara T, Yago M, Itoh T, Wang M, Usami S, Hikida S. Phylogeography of Fischer’s blue, Tongeia fischeri, in Japan: evidence for introgressive hybridization. Mol Phylogenet Evol. 2013;66:316–26.

    Article  PubMed  Google Scholar 

  • Jinam T, Nishida N, Hirai M, Kawamura S, Oota H, Umetsu K, Kimura R, Ohashi J, Tajima A, Yamamoto T, Tanabe H, Mano S, Suto Y, Kaname T, Naritomi K, Yanagi K, Niikawa N, Omoto K, Tokunaga K, Saitou N. The history of human populations in the Japanese archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations. J Human Genet. 2012;57:787–95.

    Article  CAS  Google Scholar 

  • Kamer K, Fong P. A fluctuating salinity regime mitigates the negative effects of reduced salinity on the estuarine macroalga, Enteromorpha intestinalis (L.) link. J Exp Mar Biol Ecol. 2000;254:53–69.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki City Museum. Sea and life. The period when Nori was foaming at Kawasaki. Kawasaki: Kawasaki City Museum; 1995.

    Google Scholar 

  • Kawashima Y, Akasaki T, Matsumoto Y, Yamazaki Y, Shimada S. Species identification of imported and Japanese commercial green algal products, based on phylogenetic analyses using the nrITS2 and 5S rDNA spacer regions. Fish Sci. 2013;79:521–9.

    Article  CAS  Google Scholar 

  • Kawashima Y, Akasaki T, Matsumoto Y, Shimada S. Development of a rapid and accurate PCR-based detection method for commercially valuable green algal species. Fish Sci. 2014;80:859–67.

    Article  CAS  Google Scholar 

  • Kaya HB, Cetin O, Kaya H, Sahin M, Sefer F, Kahraman A, Tanyolac B. SNP discovery by Illumina-based transcriptome sequencing of the olive and the genetic characterization of Turkish olive genotypes revealed by AFLP, SSR and SNP markers. PLoS ONE. 2013;8(9):e73674.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuchi N. Discrimination between Pyropia species and forma by morphological data. In: Fujiyoshi E, Tamaki M, Kobayashi M, Aritaki M, editors. Characteristics of Nori cultivars. Nagasaki: Seikai National Fisheries Research Institute; 2014.

    Google Scholar 

  • Kikuchi N, Niwa K. Habitat and morphology of the endangered species Porphyra tenera (Bangiales, Rhodophyta) at the estuary of Tamagawa River in Tokyo Bay. Jap J Phycol. 2006;54:149–56.

    Google Scholar 

  • Kikuchi M, Yoshida T, Yoshinaga K. Distribution of some endangered species of Porphyra. Ecosophia. 2002;9:112–7.

    Google Scholar 

  • Kjellman FR. Japanska arter af slägtet Porphyra. Bihang Till K. Svenska Vet Akad Handlingar. 1897;23:1–34.

    Google Scholar 

  • Koizumi I, Usio N, Kawai T, Azuma N, Masuda R. Loss of genetic diversity means loss of geological information: the endangered Japanese crayfish exhibits remarkable historical footprints. PLoS ONE. 2012;7(3):e33986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krayesky DM, Norris JN, West JA, Kamiya M, Viguerie M, Wysor BS, Fredericq S. Two new species of Caloglossa (Delesseriaceae, Rhodophyta) from the Americas, C. confusa and C. fluviatilis. Phycologia. 2012;51(5):513–30.

    Article  Google Scholar 

  • Lam DW, Zechman FW. Phylogenetic analyses of the Bryopsidales (Ulvophyceae, Chlorophyta) based on rubisco large subunit gene sequences. J Phycol. 2006;42:669–78.

    Article  CAS  Google Scholar 

  • Liu D, Keesing JK, Xing Q, Shi P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull. 2009;58:888–95.

    Article  CAS  PubMed  Google Scholar 

  • Martins I, Oliveria JM, Flindt MR, Marques JC. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (West Portugal). Acta Oecol. 1999;20:259–65.

    Article  Google Scholar 

  • Masakiyo Y, Shimada S. Species diversity of the genus Ulva (Ulvophyceae, Chlorophyta) in Japanese waters, with special reference to Ulva tepida Masakiyo et S. Shimada sp. nov. Bull Nat Mus Nat Sci Ser B. 2014;40:1–13.

    Google Scholar 

  • Matsuda J, Setoguchi H. Isolation and characterization of microsatellite loci in Asarum leucosepalum (Aristolochiaceae), an endangered plant endemic to Tokunoshima Island in the Ryukyu Archipelago. Conserv Genet Res. 2012;4:579–81.

    Article  Google Scholar 

  • Matsumoto M, Shimada S. Systematics of green algae resembling Ulva conglobata, with a description of Ulva adhaerens sp. nov. (Ulvales, Ulvophyceae). Eur J Phycol. 2015;50:100–11.

    Article  Google Scholar 

  • McAvoy KM, Klug JL. Positive and negative effects of riverine input on the estuarine green alga Ulva intestinalis (syn. Enteromorpha intestinalis) (Linnaeus). Hydrobiologia. 2005;545:1–9.

    Article  Google Scholar 

  • Miura A. Taxonomic studies of Porphyra species cultivated in Japan, referring to their transition to the cultivated variety. J Tokyo Univ Fish. 1988;75:311–25.

    Google Scholar 

  • Miyashita A. Thing and human cultural history. Tokyo: Hosei University Press; 2003.

    Google Scholar 

  • Müller OF (1778) Icones plantarum. Florae danicae, vol. 5, fasc 13. Copenhagem.

    Google Scholar 

  • Nagai S, Nishitani G, Sakamoto S, Sugaya T, Lee CK, Kim CH, Itakura S, Yamaguchi M. Genetic structuring and transfer of marine dinoflagellate Cochlodinium polykrikoides in Japanese and Korean coastal waters revealed by microsatellites. Mol Ecol. 2009;18:2337–52.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K. The first symbiont-free genome sequence of marine red alga, susabi-nori (Pyropia yezoensis). PLoS ONE. 2013;8(3):e57122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nei M, Tajima F. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics. 1983;105:207–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Niwa K, Sakamoto T. Allopolyploidy in natural and cultivated populations of Porphyra. J Phycol. 2010;46:1097–105.

    Article  Google Scholar 

  • Niwa K, Kikuchi N, Aruga Y. Morphological and molecular analysis of the endangered species Porphyra tenera (Bangiales, Rhodophyta). J Phycol. 2005;41:294–304.

    Article  CAS  Google Scholar 

  • Niwa K, Iida S, Kato A, Kawai H, Kikuchi N, Kobiyama A, Aruga Y. Genetic diversity and introgression in two cultivated species (Porphyra yezoensis and Porphyra tenera) and closely related wild species of Porphyra (Bangiales, Rhodophyta). J Phycol. 2009;45:493–502.

    Article  CAS  Google Scholar 

  • Niwa K, Kobiyama A, Sakamoto T. Interspecific hybridization in the haploid blade-forming marine crop Porphyra (Bangiales, Rhodophyta): occurrence of allodiploidy in surviving F1 gametophytic blades. J Phycol. 2010;46:693–702.

    Article  CAS  Google Scholar 

  • Notoya M. Porphyra. In: Ohno M, editor. Biology and technology of economic seaweeds. Tokyo: Uchida Rokakuho; 2004.

    Google Scholar 

  • Nunome M, Kinoshita G, Tomozawa M, Torii H, Matsuki R, Yamada F, Matsuda Y, Suzuki H. Lack of association between winter coat colour and genetic population structure in the Japanese hare, Lepus brachyurus (Lagomorpha: Leporidae). Biol J Linn Soc. 2014a;111(4):761–76.

    Article  Google Scholar 

  • Nunome M, Kinoshida G, Motozawa M, Torii H, Matsuki R, Yamada F, Matsuda Y, Suzuki H. Lack of association between winter coat colour and genetic population structure in the Japanese hare, Lepus brachyurus (Lagomorpha: Leporidae). Biol J Linn Soc. 2014b;111:761–76.

    Article  Google Scholar 

  • Ohnishi M, Kikuchi N, Iwasaki T, Kawaguchi R, Shimada S. Population genomic structures of endangered species (CR + ER), Pyropia tenera (Bangiales, Rhodophyta). Jpn J Phycol. 2013;61:87–96.

    Google Scholar 

  • Ohno M. Ulva and extensive biomass. In: Notoya M, editor. Utilization of Ulva and restoration of the environment. Tokyo: Seizando; 1999. p. 1–15.

    Google Scholar 

  • Ohno M, Mizutani Y, Taino Takahashi I. Ecology of the edible green alga Enteromorpha prolifera in Shimanto River, Southern Japan. Bull Mar Sci Fish Kochi Univ. 1999;19:27–35.

    Google Scholar 

  • Okamura K. Asakusa Nori (Porphyra tenera). Tokyo: Hakubunn-kan; 1909.

    Google Scholar 

  • Park CS, Hwang EK, Sohn CH. A atable seeding method for Porphyra pseudolinearis Ueda (Rhodophyta): developing a new species for cultivation of Porphyra in Korea. Aquat Res. 2003;34:895–8.

    Article  Google Scholar 

  • Perevra RT, Bergström L, Kautsky L, Johannesson K. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol Biol. 2009;9:70.

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Provasoli L. Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of Algae. Proceedings of US Japan conference; September 1966, Hakone, Japan. Tokyo: Japanese Society of Plant Physiologists; 1968. pp 63–75.

    Google Scholar 

  • Reed RH, Russell G. Adaptation to salinity stress in populations of Enteromorpha intestinalis (L.) link. Estu Coast Mar Sci. 1979;8:251–8.

    Article  Google Scholar 

  • Sakaguchi S, Qiu YX, Liu YH, Qi XS, Kim SH, Han J, Takeuchi Y, Worth JR, Yamasaki M, Sakurai S, Isagi Y. Climate oscillation during the quaternary associated with landscape heterogeneity promoted allopatric lineage divergence of a temperate tree Kalopanax septemlobus (Araliaceae) in East Asia. Mol Ecol. 2012;21(15):3823–38.

    Article  PubMed  Google Scholar 

  • Shimada S, Hiraoka M, Nabata S, Iima M, Masuda M. Molecular phylogenetic analyses of the Japanese Ulva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free-floating Ulva. Phycol Res. 2003;51:99–108.

    Article  CAS  Google Scholar 

  • Shimada S, Yokoyama N, Masuda M. Genus Ulva (Ulvophyceae, Chlorophyta) in Hokkaido, Japan. Jpn J Bot. 2007;82:190–204.

    Google Scholar 

  • Shimada S, Yokoyama N, Arai S, Hiraoka M. Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. J Appl Phycol. 2008;20:979–89.

    Article  Google Scholar 

  • Shimada S, Nagano M, Hiraoka M, Ichihara K, Minerur F, Zhu W. Phylogeographic analysis of the genus Ulva (Ulvales, Chlorophyta), including bloom sample in Qingdao, China. Coast Mar Sci. 2010;34:117–22.

    Google Scholar 

  • Shimada S, Ichihara K, Masakiyo Y, Iima M, Yoshida Y, Kumano S. Threatened species Nemalionopsis tortuosa (Thoreales, Rhodophyta) in Japan, new locality and current condition of its all reported habitats. Algal Res. 2012;5:9–16.

    Google Scholar 

  • Silberfeld T, Rousseeau F, de Reviers B. An updated classification of brown algae (Ochrophyta, Phaeophyceae). Cryptog Algol. 2014;35(2):117–56.

    Article  Google Scholar 

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MD, Hwang MS, Choi HG, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstei D, Müller KM. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol. 2011;47(5):1131–51.

    Article  Google Scholar 

  • Tanaka N, Demise T, Ishii M, Shji Y, Nakaoka M. Genetic structure and gene flow of eelgrass Zostera marina populations in Tokyo Bay, Japan: implications for their restoration. Mar Biol. 2011;158:871–82.

    Article  Google Scholar 

  • Tatyana A, Shim JB, Hwang MS, Kim GH. Host-parasiteinteractions and host species susceptibility of the marine oomycete parasite, Olpidiopsis sp., from Korea that infects red algae. J Appl Phycol. 2012;24:135–44.

    Article  Google Scholar 

  • Touhata K, Namikoshi A, Suzuki T, Iguchi J, Mizusawa N, Hara T, Imamura S, Yabu T, Yamashita Y, Yamashita M. Origin identification of dried seaweed product “Nori” by PCR–RFLP analysis of Pyropia yezoensis in the internal transcribed spacer ITS-1 region. Fish Sci. 2013;79:865–75.

    Article  CAS  Google Scholar 

  • Ueda S. Systematic study of the genus Porphyra in Japan. Suiko Kenkyu Kokoku. 1932;28:1–45.

    Google Scholar 

  • van den Hoek C, Man DG, Jahns HM. Algae. An introduction to phycology. Cambridge: Cambridge University Press; 1995.

    Google Scholar 

  • van Inghelandt D, Melchinger AE, Lebreton C, Stich B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet. 2010;120:1289–99.

    Article  PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Thiel T, Stein N, Langridge P, Graner A. In silico analysis of frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett. 2002;7(2A):537–46.

    CAS  PubMed  Google Scholar 

  • Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, Seehausen O. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol. 2013;22(3):787–98.

    Article  CAS  PubMed  Google Scholar 

  • Xia C, Li B, Ji D, Chen C. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers. BMC Genom. 2013;14:107.

    Article  Google Scholar 

  • Xing Q, Gao M, Gao X, Tosi L, Schmitt FG, Zhang Y, Shi P, Wei J, Luo Y. Progressive eutrophication behind the world-largest super floating macroalgal bloom in the Yellow Sea. Biogeosci Dis. 2014;11:7029–54.

    Article  Google Scholar 

  • Xu P, Xu SZ, Wu XH, Tao Y, Wang BG, Wang S, Qin DH, Lu ZF, Li GJ. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. Plant J. 2014;77:430–42.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T. Marine algae of Japan. Tokyo: Uchida Rokakuho; 1998.

    Google Scholar 

  • Zhang L, Wang G, Liu C, Chi S, Liu T. Development and utility of EST-SSR markers in Ulva prolifera of the south Yellow Sea. Acta Oceanol Sin. 2014;33(10):105–13.

    Article  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to Dr. Takaya Iwasaki of Tokyo Univ., for helpful discussions. We greatly appreciate the stimulating discussions, constructive criticism and valuable suggestions on an early version of the manuscript by Senior Lecturer Alecia Bellgrove and Casual Academic Vanessa Skrzypczyk of Marine Biologist at Deakin University Warrnamboolfor. We also thank the Japanese Society of Phycology for the permission of the reproduction of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Shimada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shimada, S., Ichihara, K., Masakiyo, Y., Kawaguchi, R., Kikuchi, N. (2016). Phylogeography of Macroalgal Species Distributed in Brackish Water: Ulva prolifera (Ulvophyceae) and Pyropia tenera (Bangiophyceae). In: Hu, ZM., Fraser, C. (eds) Seaweed Phylogeography. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7534-2_14

Download citation

Publish with us

Policies and ethics