Skip to main content

Part of the book series: RILEM Bookseries ((RILEM,volume 12))

  • 3245 Accesses

Abstract

A simple model is used to explain the decrease of the Young’s modulus of plant fibers as the apparent diameter is increased. The assumption made in this work is that the fiber consists of a very thin but stiff outer shell, and a thicker but less stiff inner shell which defines the load bearing area. The model is favorably compared with the experimental data reported in the literature for flax, hemp and stinging nettle fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agopyan V, Savastano Jr H, John VM, Cincotto MA. Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement & Concrete Composites, (2005), 27, 527–536.

    Google Scholar 

  • Aslan M, Chinga-Carrasco G, Sørensen BF, Madsen B. Strength variability of single flax fibres. J. Mater. Sci., (2011), 46, 6344–6354.

    Google Scholar 

  • Baley C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites: Part A, (2002), 33, 939–948.

    Google Scholar 

  • Barbulée A, Jernot, JP, Bréard, J, Gomina, M. Damage to flax fibre slivers under monotonic uniaxial tensile loading. Composites Part A: Applied Science and Manufacturing, (2014), 64, 107–114.

    Google Scholar 

  • Bodros E, Baley C. Study of the tensile properties of stinging nettle fibres (Urtica Dioica). Materials Letters, (2008), 62, 2147–2149.

    Google Scholar 

  • Chafei S, Khadraoui F, Boutouil M, Gomina M. Optimizing the formulation of flax fiber-reinforced cement composites. Construction and Building Materials, (2014), 54, 659–664.

    Google Scholar 

  • Chafei S, Khadraoui F, Boutouil M, Gomina M. Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Construction and Building Materials, (2015), 79, 229–235.

    Google Scholar 

  • Charlet K, Morvan C, Bréard J, Jernot JP, Gomina M. Etude morphologique d’un composite naturel, la fibre de lin. Rév Compos Matér Av, (2006), 16, 11–24.

    Google Scholar 

  • Charlet K, Jernot JP, Gomina M, Bizet L, Bréard J. Analyse structurale et comportement mécanique d’une fibre de lin. Rév Compos Matér Av, (2008), 18, 157–162.

    Google Scholar 

  • Destaing F. Contribution à l’étude du comportement mécanique de matériaux composites biosourcés lin/Pa11 élaborés par thermocompression. PhD thesis at the University of Caen, Lower Normandy, France, December 2012.

    Google Scholar 

  • Duval A, Bourmaud A, Augier L, Baley C. Influence of the sampling area of the stem on the mechanical properties of hemp fibres. Materials Letters, (2011), 65, 797–800.

    Google Scholar 

  • De Andrade Silva F, Mobasher B, Toledo Filho RD. Cracking mechanisms in durable sisal fiber-reinforced cement composites. Cement & Concrete Composites, (2009), 31, 721–730.

    Google Scholar 

  • Ghavai K. Bamboo as reinforcement in structural concrete elements. Cement & Concrete Composites, (2005), 27, 637–649.

    Google Scholar 

  • Jones BF, Duncan RG. The effect of fibre diameter on the mechanical properties of graphite fibres manufactured from polyacrylonitrile and rayon. J. Mater. Sci., (1971), 6, 289–293.

    Google Scholar 

  • Le Hoang T, Khadraoui F, Boutouil M, Gomina M. Mechanical properties of flax fibre-reinforced cement composites. International Conference on Technological Advancements in Civil Engineering (ICTACE), Chennai, India, Proceedings of ICTACE, (2011), 250–255.

    Google Scholar 

  • Li Z, Wang X and Wang L. Properties of hemp fibre-reinforced concrete composites. Composites Part A, (2006), 37, 497–505.

    Google Scholar 

  • Placet V, Trivaudey F, Cisse O, Guicheret-Retel V, Boubakar L. Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Composites: Part A, (2012), 43, 275–287.

    Google Scholar 

  • Salmén L. Micromechanical understanding of the cell-wall structure. C.R. Biologies, (2004), 327, 873–880.

    Google Scholar 

  • Sinha MK. Rope-making with banana-plant fibre. J. Text. Inst., (1974), 65, 612–615.

    Google Scholar 

  • Thuault A, Eve S, Blond D, Bréard J, Gomina M. Effects of the hygrothermal environment on the mechanical properties of flax fibres. Journal of Composite Materials, (2013), 48 [14], 1699–1707.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Jouannot-Chesney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this paper

Cite this paper

Jouannot-Chesney, P., Jernot, JP., Bréard, J., Gomina, M. (2016). Young’s Modulus of Plant Fibers. In: Fangueiro, R., Rana, S. (eds) Natural Fibres: Advances in Science and Technology Towards Industrial Applications. RILEM Bookseries, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7515-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7515-1_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7513-7

  • Online ISBN: 978-94-017-7515-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics