Renewable Materials for Stab Resistance

  • Marcus O. Weber
  • Susanne Aumann
  • Malin Obermann
  • Andrea Ehrmann
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 12)


Different materials were investigated experimentally with respect to their stab resistance. The focus of this research is the use of renewable cellulosic materials , such as cotton and paper, in comparison with high-performance materials, such as aramid or ultra-high-molecular-weight polyethylene. The tests were carried out according to the standard of the Association of Test Laboratories for Bullet, Stab or Pike Resistant Materials and Construction Standards (VPAM). The results for common cellulosic materials achieve remarkable results in comparison with high-performance materials. Depending on the stab resistance being compared in terms of fabric thickness or mass per unit area, especially standard paper performed well, while even common cotton depicted a significant stab resistance . The results of these investigations demonstrate the advantages and limitations of renewable cellulosic materials in comparison to high-performance fibrous structures.


Cellulosic materials Stab resistance Knitted fabric Structural parameters 



The authors gratefully acknowledge the funding by the Bundesministerium für Wirtschaft und Technologie due to a decision of the Deutscher Bundestag under grant KF 2233806.


  1. Alpyildiz T., Rochery M., Kurbak A., Flambard X.; Textile Research Journal 81, 205–214 (2011).Google Scholar
  2. Aumann, S.; Ehrmann, A.; Vidzem, B.; Brücken, A.; Weber, M. O.; Bache, T.: Comparison of penetration depth and cutting width in stab protection measurements according to VPAM. 7. Aachen Dresden Textile Conference, Aachen 28–29 November 2013Google Scholar
  3. Chen J. M., Hsieh J. C., Lou C. W., Hsing W. H., Yang H. J., Lin J. H.; International Conference on Smart Materials – Smart/Intelligent Materials and Nanotechnology/2nd Int Workshop on Functional Materials and Nanomaterials: Advanced Materials Research 55–57, Chiang Mai, Thailand, 417–420 (2008)Google Scholar
  4. Chung, S.; Ehrmann, A.; Weber, M.: Accuracy of thickness measurements on knitted fabrics. Melliand International 01 (2013) 32–33Google Scholar
  5. Croft J.; Longhurst D.: HOSDB Body Armour Standards for UK Police (2007), Part 3: Knife and Spike Resistance. Publication No. 39/07/C (2007)Google Scholar
  6. Decker M. J., Halbach C. J., Nam C. H., Wagner N. J., Wetzel E. D.; Composites Science and Technology 67, 565–578 (2007)Google Scholar
  7. Ehrmann A., Aumann S., Brücken A., Weber M. O.; Technische Textilien 56, 198–199 (2013)Google Scholar
  8. Flambard X., PhD Thesis, Université des Sciences et Tecnologies de Lille I (2000)Google Scholar
  9. Flambard X., Polo J.; Journal of Advanced Materials 36, 30–35 (2004)Google Scholar
  10. Firouzi D., Foucher D. A., Bougherara H.; Journal of Applied Polymer Science 131, 40350 (2014)Google Scholar
  11. Gong X., Xu Y., Zhu W., Xuan S., Jiang W., Jiang W.; Journal of Composite Materials 48, 641–657 (2014)Google Scholar
  12. Hassim N., Ahmad M. R., Ahmad W. Y. W., Samsuri A., Yahya M. H. M.; Journal of Industrial Textiles 42, 118–131 (2012)Google Scholar
  13. Horsfall I., Watson C. H., Champion S. M.; Journal of Applied Mechanics – Transactions of the ASME 80, 031901 (2013)Google Scholar
  14. Hou L., Sun B., Gu B.; Applied Composite Materials 20, 569–585 (2013)Google Scholar
  15. Li T. T., Wang R., Lou C. W., Lin, J. H.; Journal of Industrial Textiles 43, 247–263 (2013)Google Scholar
  16. Lin C. C., Lou C. W., Hsing W. H., Ma W. H., Lin C. M., Lin J. H.; Advanced Materials Research 55–57, 429-432 (2008)Google Scholar
  17. Mayo Jr. J. B., Wetzel E. D., Hosur M. V., Jeelani S.; International Journal of Impact Engineering 36, 1095–1105 (2009)Google Scholar
  18. Stojanovic D. B., Zrilic M., Jancic-Heinemann R., Zivkovic I., Kojovic A., Uskokovic P. S., Aleksic R.; Polymers for advanced technologies 24, 772–776 (2013)Google Scholar
  19. Termonia Y.; International Journal of Impact Engineering 32, 1512–1520 (2006)Google Scholar
  20. Textor T., Schroeter F., Schollmeyer E.; Symposium on Smart Nanotextiles held at the 2006 MRS Spring Meeting: Materials Research Society Symposium Proceedings vol. 920, San Francisco, CA, pp 1–11 (2006)Google Scholar
  21. Vidzem, B.; Aumann, S.; Heimlich, F.; Werner, R.; Ehrmann, A.; Obermann, M.; Brücken, A.; Weber, M. O.; Bache, T.: Stab resistance of textile materials. 7. Aachen Dresden Textile Conference, Aachen 28–29 November 2013Google Scholar
  22. (VPAM) Vereinigung der Prüfstellen für angriffshemmende Materialien und Konstruktionen: Prüfrichtlinie „Stich- und Schlagschutz“, VPAM-KDIW 2004 (2011)Google Scholar
  23. Weber, M. O.; Aumann, S.; Vidzem, B.; Obermann, M.; Brücken, A.; Ehrmann, A.; Bache, T.: Comparison of different yarns for stab resistant knitted fabrics. 47th International Congress IFKT, 25–26 September 2014a, Izmir, TurkeyGoogle Scholar
  24. Weber, M. O.; Aumann, S.; Brücken, A.; Ehrmann, A.; Bache, T.: Stab resistant knitted clothing. 8. Aachen Dresden Textile Conference, Dresden 27–28 November 2014bGoogle Scholar
  25. Yong K. C.; Polymers & Polymer Composites 22, 375–380 (2014)Google Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  • Marcus O. Weber
    • 1
  • Susanne Aumann
    • 1
  • Malin Obermann
    • 1
  • Andrea Ehrmann
    • 2
  1. 1.Faculty of Textile and Clothing TechnologyNiederrhein University of Applied SciencesMönchengladbachGermany
  2. 2.Faculty of Engineering Sciences and MathematicsBielefeld University of Applied SciencesBielefeldGermany

Personalised recommendations