Skip to main content

Poly Lactic Acid Fibre Based Biodegradable Stents and Their Functionalization Techniques

  • Conference paper
  • First Online:
Natural Fibres: Advances in Science and Technology Towards Industrial Applications

Part of the book series: RILEM Bookseries ((RILEM,volume 12))

Abstract

Commercial stents, especially metallic ones, present several disadvantages, and this gives rise to the necessity of producing stents with different materials, like natural polymers, in order to improve their biocompatibility and minimize the disadvantages of metallic ones. Another way to improve the biocompatibility and create a stent with less thrombogenic and inflammatory materials is through surface functionalization. This possibility allow to provide new functionalities to materials, like drug release or higher biocompatibility. One of the most used technique for stents functionalization is Layer by Layer (LBL). The principle of this technique is based on the alternating adsorption of materials with opposite charge or functional groups, in order to form integrated thin films. This review paper discusses some applications of natural-based polymers in stents, namely polylactic acid (PLA) for stent development and chitosan for biocompatible coatings of stents. Furthermore, some effective stent functionalization techniques will be discussed, namely Layer by Layer technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • N. Vila, “Braided Hybrid Stents Design,” in Master Thesis on Design and Marketing, University of Minho, 2009.

    Google Scholar 

  • S. Commandeur, H. M. Van Beusekom and W. J. Van Der giessen, “Polymers, Drug Release, and Drug-Eluting Stents,” Journal of Interventional Cardiology, vol. 19, no. 6, pp. 500-506, 2006.

    Google Scholar 

  • J. Dyet, W. Watts, D. Ettles and A. Nicholson, “Mechanical Properties of Metallic Stents: How do These Properties Influence the Choice of Stent for Specific Lesions?,” Cardiovascular and Interventional Radiology, vol. 23, no. 47-54, 2000.

    Google Scholar 

  • R. Rebelo, R. Fangueiro, S. Carvalho, M. Henriques and S. Rana, “Methods of incorporation antimicrobial agents in stents,” International Journal of Engineering Science and Innovative Technology (IJESIT), vol. 3, no. 2, pp. 409-422, 2014.

    Google Scholar 

  • L. França and A. Pereira, “Update on vascular endoprostheses (stents):from experimental to clinical pratice.,” Jornal Vascular Brasileiro, 7, 2008.

    Google Scholar 

  • B. Calabia and Y. Tokiwa, “Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii,” Biotechnology letters, vol. 29, pp. 1329-1332, 2007.

    Google Scholar 

  • Z. Lili, “Síntese e caracterização do copolímero triblocoanfifílico biodegradável Poli (L, L- Lactídeo- stat e carpolactona)-bloco- poli (óxido de etileno)- bloco-Poli (L, L- Lactídeo- stat e carpolactona),” Master thesis on Engineering, University of São Paulo, 2007.

    Google Scholar 

  • F. Dias, D. Queiroz, R. Nascimento and M. Lima, “Simple system for preparation of chitosan microspheres,” Química Nova, vol. 31, no. 1, 2008.

    Google Scholar 

  • V. Balan and L. Verestiuc, “Strategies to improve chitosan hemocompatibility: A review.,” European Polymer Journal, pp. 171-188, 2014.

    Google Scholar 

  • S. Meng, Z. Liu, L. Shen, Z. Guo, L. Choud, W. Zhong, Q. Du and J. Ge, “The effect of a layer-by-layer chitosan–heparin coating on the endothelialization and coagulation properties of a coronary stent system,” Biomaterials, vol. 30, p. 2276–2283, 2009.

    Google Scholar 

  • Y. Zhu, C. Gao, X. Liu, T. He and J. Shen, “Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration,” Tissue Engineering, vol. 10, pp. 53-61, 2004.

    Google Scholar 

  • L. Reis, N. Neves, J. Mano, M. Gomes, A. Marques and H. Azevedo, Natural-based polymers for biomedical applications, Woodhead Publishing Limited, 2008.

    Google Scholar 

  • N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin and O. Ciofy, “Antibiotic resistance of bacterial biofilms,” International Journal Antimicrobial Agents, vol. 35, pp. 322-332, 2010.

    Google Scholar 

  • D. Pavithra and M. Doble, “Biomedical Materials,” Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention, vol. 3, pp. 1-13, 2008.

    Google Scholar 

  • M. Knetsch and L. Koole, “New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles,” Polymers, vol. 2, pp. 340-366, 2003.

    Google Scholar 

  • S. Grag and P. Serruys, “Coronary Stents Current Status,” Journal of the American College of Cardiology, vol. 56, pp. S1-S42, 2010.

    Google Scholar 

  • H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara and H. Uehata, “Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans,” Circulation, vol. 102, no. 4, pp. 399-404, 2000.

    Google Scholar 

  • S. Nishio, K. Kosuga, K. Igaki, M. Okada, E. Kyo, T. Tsuji, E. Takeuchi, Y. Inuzuka, S. Takeda, T. Hata, Y. Takeuchi, Y. Kawada, T. Harita, J. Seki, S. Akamatsu, S. Hasegawa, N. Bruining, S. Brugaletta, S. de Winter, T. Muramatsu, Y. Onuma, P. Serruys and S. Ikeguchi, “Long-Term (> 10 Years) Clinical Outcomes of First-in-Human Biodegradable Poly-l-Lactic Acid Coronary Stents,” Circulation, vol. 125, pp. 2343-2353, 2012.

    Google Scholar 

  • J. Ormiston, P. Serruys, E. Regar, D. Dudek, L. Thuesen, M. Webster, Y. Onuma, H. Garcia-Garcia, R. McGreevy and S. Veldhof, “A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial,” The Lancet, vol. 371, pp. 899-907, 2008.

    Google Scholar 

  • B. Gogas, V. Farooq, Y. Onuma and P. Serruys, “The ABSORB Bioresorbable Vascular Scaffold:An Evolution or Revolution in Interventional Cardiology?,” Hellenic Journal of Cardiology, vol. 53, pp. 301-309, 2012.

    Google Scholar 

  • T. Muramatsu, Y. Onuma, Y. Zhang, C. Bourantas, A. Kharlamov, R. Diletti, V. Farooq, B. Gogas, S. Garg, H. García-García, Y. Ozaki and P. Serruys, “Progress in Treatment by Percutaneous Coronary Intervention:The Stent of the Future,” Revista Española de Cardiología, vol. 66, no. 6, p. 483–496, 2013.

    Google Scholar 

  • A. Lauto, M. Ohebshalom, M. Esposito, J. Mingin, P. Li, D. Felsen, M. Goldstein and D. Poppas, “Self-expandable chitosan stent: design and preparation,” Biomaterials, pp. 1869-1874, 2001.

    Google Scholar 

  • M. Chen, C. Liu, H. Tsai, W. Lai, Y. Chang and H. Sung, “Mechanical properties, drug eluting characteristics and in vivo performance of a genipin-crosslinked chitosan polymeric stent,” Biomaterials, vol. 30, pp. 5560-5571, 2009.

    Google Scholar 

  • B. Thierry, F. Winnik, Y. Merhi, J. Silver and M. Tabrizian, “Bioactive Coatings of Endovascular Stents Based on Polyelectrolyte Multilayers,” Biomacromolecules, vol. 4, pp. 1564-1571, 2003.

    Google Scholar 

  • M. Michel, V. Toniazzo, D. Ruch and V. Ball, “Deposition Mechanisms in Layer-by-Layer or Step-by-Step Deposition Methods: From Elastic and Impermeable Films to Soft Membranes with Ion Exchange Properties,” ISRN Materials Science, vol. 2012, pp. 1-13, 2012.

    Google Scholar 

  • Y. Wang, A. Angelatos and F. Caruso, “Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly,” Chemistry of Materials, vol. 20, no. 3, 2008.

    Google Scholar 

  • W. Cheng and J. McCarthy, “Layer-by-Layer deposition: a tool for polymer surface modification,” Macromolecules, vol. 30, p. 1997, 78-86.

    Google Scholar 

  • L. Shen, Y. Wu, F. Zhang, L. Wu, C. Dong, Y. Gao, A. Sun, Y. Zou, J. Qian, J. Sun, W. Zhong and J. Ge, “Assessment of an asymmetrical coating stent with sirolimus released from ablumial matrix in porcine model,” Clinical Research in Cardiology, vol. 101, pp. 917-927, 2012.

    Google Scholar 

  • S. Meng, Z. Liu, W. Zhong, Q. Wang and Q. Du, “Phossphorylcholine modified chitosan: Appetent and safe material for cells,” Carbohydrate polymers,, vol. 70, pp. 82-88, 2007.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding by Ministério da Ciência, Tecnologia e Ensino Superior, FCT, Portugal, under grant SFRH/BD/90321/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rebelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this paper

Cite this paper

Rebelo, R., Vila, N., Rana, S., Fangueiro, R. (2016). Poly Lactic Acid Fibre Based Biodegradable Stents and Their Functionalization Techniques. In: Fangueiro, R., Rana, S. (eds) Natural Fibres: Advances in Science and Technology Towards Industrial Applications. RILEM Bookseries, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7515-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7515-1_25

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7513-7

  • Online ISBN: 978-94-017-7515-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics