Skip to main content

The Integrated Physiology of the Lower Urinary Tract

  • Chapter
  • First Online:
Neurourology
  • 1161 Accesses

Abstract

The lower urinary tract (LUT) consists of the bladder and outflow tract. For most of the time the LUT serves a storage function, whereby the bladder fills with urine from the ureters whilst maintaining a low intraluminal pressure and the outflow tract offers a high fluid resistance to maintain continence. At regular intervals voiding occurs when the bladder wall contracts, to raise intraluminal pressure, and the outflow tract relaxes. Furthermore, the LUT is supported by a pelvic floor musculature. This chapter provides an overview of the physiological functions of the lower urinary tract, some of the functional disorders that can occur and a survey of the tissues that help to maintain these essential functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fry CH, Gammie A, Drake MJ, Abrams P, Kitney DG, Vahabi B. Estimation of bladder contractility from intravesical pressure-volume measurements. Neurourol Urodyn. 2017;36:1009–14.

    Article  CAS  Google Scholar 

  2. Aldamanhori R, Chapple CR. Underactive bladder, detrusor underactivity, definition, symptoms, epidemiology, etiopathogenesis, and risk factors. Curr Opin Urol. 2017;27:293–9.

    Article  Google Scholar 

  3. Grossman W, Brooks H, Meister S, Sherman H, Dexter L. New technique for determining instantaneous myocardial force-velocity relations in the intact heart. Circ Res. 1971;28:290–7.

    Article  CAS  Google Scholar 

  4. Fry CH, Chess-Williams R, Hashitani H, Kanai AJ, McCloskey K, Takeda M, et al. Cell biology. In: Abrams P, Cardozo L, Wagg A, Wein A, editors. Incontinence. 6th ed. Paris: Health Publications, Ltd; 2017.

    Google Scholar 

  5. Imamura M, Kanematsu A, Yamamoto S, Kimura Y, Kanatani I, Ito N, et al. Basic fibroblast growth factor modulates proliferation and collagen expression in urinary bladder smooth muscle cells. Am J Physiol Renal Physiol. 2007;293:F1007–17.

    Article  CAS  Google Scholar 

  6. Asgari M, Latifi N, Heris HK, Vali H, Mongeau L. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci Rep. 2017;7:1392.

    Article  Google Scholar 

  7. van den Borne SWM, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2009;7:30–7.

    Article  Google Scholar 

  8. Altuntas CZ, Daneshgari F, Izgi K, Bicer F, Ozer A, Sakalar C, et al. Connective tissue and its growth factor CTGF distinguish the morphometric and molecular remodeling of the bladder in a model of neurogenic bladder. Am J Physiol Renal Physiol. 2012;303:F1363–9.

    Article  CAS  Google Scholar 

  9. Zhang K, Guo X, Zhao W, Niu G, Mo X, Fu Q. Application of wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study. Int J Mol Sci. 2015;16:27659–76.

    Article  CAS  Google Scholar 

  10. Yang L, Liu R, Wang X, He D. Imbalance between matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) contributes to bladder compliance changes in rabbits with partial bladder outlet obstruction (PBOO). BJU Int. 2013;112:E391–7.

    Article  CAS  Google Scholar 

  11. Huang X, Gai Y, Yang N, Lu B, Samuel CS, Thannickal VJ, et al. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am J Pathol. 2011;179:2751–65.

    Article  CAS  Google Scholar 

  12. Snowdon VK, Lachlan NJ, Hoy AM, Hadoke PW, Semple SI, Patel D, et al. Serelaxin as a potential treatment for renal dysfunction in cirrhosis: preclinical evaluation and results of a randomized phase 2 trial. PLoS Med. 2017;14:e1002248.

    Article  Google Scholar 

  13. Pakzad M, Ikeda Y, McCarthy C, Kitney DG, Jabr RI, Fry CH. Contractile effects and receptor analysis of adenosine-receptors in human detrusor muscle from stable and neuropathic bladders. Naunyn Schmiedeberg’s Arch Pharmacol. 2016;389:921–9.

    Article  CAS  Google Scholar 

  14. Bayliss M, Wu C, Newgreen D, Mundy AR, Fry CH. A quantitative study of atropine-resistant contractile responses in human detrusor smooth muscle, from stable, unstable and obstructed bladders. J Urol. 1999;162:1833–9.

    Article  CAS  Google Scholar 

  15. Johal N, Wood DN, Wagg AS, Cuckow P, Fry CH. Functional properties and connective tissue content of pediatric human detrusor muscle. Am J Physiol Renal Physiol. 2014;307:F1072–9.

    Article  CAS  Google Scholar 

  16. Harvey RA, Skennerton DE, Newgreen D, Fry CH. The contractile potency of adenosine triphosphate and ecto-adenosine triphosphatase activity in guinea pig detrusor and detrusor from patients with a stable, unstable or obstructed bladder. J Urol. 2002;168:1235–9.

    Article  CAS  Google Scholar 

  17. Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev. 2004;84:935–86.

    Article  CAS  Google Scholar 

  18. Sellers DJ, Yamanishi T, Chapple CR, Couldwell C, Yasuda K, Chess-Williams R. M3 muscarinic receptors but not M2 mediate contraction of the porcine detrusor muscle in vitro. J Auton Pharmacol. 2000;20:171–6.

    Article  CAS  Google Scholar 

  19. Frazier EP, Peters SL, Braverman AS, Ruggieri MR Sr, Michel MC. Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors. Naunyn Schmiedeberg’s Arch Pharmacol. 2008;377:449–62.

    Article  CAS  Google Scholar 

  20. Drake MJ, Nitti VW, Ginsberg DA, Brucker BM, Hepp Z, McCool R, et al. Comparative assessment of the efficacy of onabotulinumtoxinA and oral therapies (anticholinergics and mirabegron) for overactive bladder: a systematic review and network meta-analysis. BJU Int. 2017;120:611–22.

    Article  CAS  Google Scholar 

  21. Sui GP, Coppen SR, Dupont E, Rothery S, Gillespie J, Newgreen D, et al. Impedance measurements and connexin expression in human detrusor muscle from stable and unstable bladders. BJU Int. 2003;92:297–305.

    Article  CAS  Google Scholar 

  22. Sui GP, Wu C, Fry CH. A description of Ca2+ channels in human detrusor smooth muscle. BJU Int. 2003;92:476–82.

    Article  CAS  Google Scholar 

  23. Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol. 2011;9:30–40.

    Article  Google Scholar 

  24. Hashitani H. Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis. J Physiol. 2006;576:707–14.

    Article  CAS  Google Scholar 

  25. Sui GP, Rothery S, Dupont E, Fry CH, Severs NJ. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int. 2002;90:118–29.

    Article  CAS  Google Scholar 

  26. Roosen A, Datta SN, Chowdhury RA, Patel PM, Kalsi V, Elneil S, et al. Suburothelial myofibroblasts in the human overactive bladder and the effect of botulinum neurotoxin type A treatment. Eur Urol. 2009;55:1440–8.

    Article  CAS  Google Scholar 

  27. Roosen A, Fry CH, Sui G, Wu C. Adreno-muscarinic synergy in the bladder trigone: calcium-dependent and -independent mechanisms. Cell Calcium. 2009;45:11–7.

    Article  CAS  Google Scholar 

  28. Roosen A, Wu C, Sui G, Chowdhury RA, Patel PM, Fry CH. Characteristics of spontaneous activity in the bladder trigone. Eur Urol. 2009;56:346–53.

    Article  CAS  Google Scholar 

  29. Gevaert T, Vanstreels E, Daelemans D, Franken J, van der Aa F, Roskams T, et al. Identification of different phenotypes of interstitial cells in the upper and deep lamina propria of the human bladder dome. J Urol. 2014;192:1555–63.

    Article  Google Scholar 

  30. Wu C, Sui GP, Fry CH. Purinergic regulation of guinea pig suburothelial myofibroblasts. J Physiol. 2004;559:231–43.

    Article  CAS  Google Scholar 

  31. Wiseman OJ, Fowler CJ, Landon DN. The role of the human bladder lamina propria myofibroblast. BJU Int. 2003;91:89–93.

    Article  CAS  Google Scholar 

  32. Andersson KE, McCloskey KD. Lamina propria: the functional center of the bladder? Neurourol Urodyn. 2014;33:9–16.

    Article  Google Scholar 

  33. Drake MJ, Harvey IJ, Gillespie JI, Van Duyl WA. Localized contractions in the normal human bladder and in urinary urgency. BJU Int. 2005;95:1002–5.

    Article  Google Scholar 

  34. Vahabi B, Drake MJ. Physiological and pathophysiological implications of micromotion activity in urinary bladder function. Acta Physiol. 2015;213:360–70.

    Article  CAS  Google Scholar 

  35. Kushida N, Fry CH. On the origin of spontaneous activity in the bladder. BJU Int. 2016;117:982–92.

    Article  CAS  Google Scholar 

  36. Ikeda Y, Fry C, Hayashi F, Stolz D, Griffiths D, Kanai A. Role of gap junctions in spontaneous activity of the rat bladder. Am J Physiol Renal Physiol. 2007;293:F1018–25.

    Article  CAS  Google Scholar 

  37. Munoz A, Smith CP, Boone TB, Somogyi GT. Overactive and underactive bladder dysfunction is reflected by alterations in urothelial ATP and NO release. Neurochem Int. 2011;58:295–300.

    Article  CAS  Google Scholar 

  38. McLatchie LM, Fry CH. ATP release from freshly isolated guinea-pig bladder urothelial cells: a quantification and study of the mechanisms involved. BJU Int. 2015;115:987–93.

    Article  CAS  Google Scholar 

  39. McLatchie LM, Young JS, Fry CH. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations. Br J Pharmacol. 2014;171:3394–403.

    Article  CAS  Google Scholar 

  40. Hanna-Mitchell AT, Wolf-Johnston AS, Barrick SR, Kanai AJ, Chancellor MB, de Groat WC, et al. Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol Urodyn. 2015;34:79–84.

    Article  CAS  Google Scholar 

  41. Teixeira CE, Jin L, Priviero FB, Ying Z, Webb RC. Comparative pharmacological analysis of Rho-kinase inhibitors and identification of molecular components of Ca2+ sensitization in the rat lower urinary tract. Biochem Pharmacol. 2007;74:647–58.

    Article  CAS  Google Scholar 

  42. Yamanishi T, Chapple CR, Yasuda K, Chess-Williams R. The role of M2 muscarinic receptor subtypes mediating contraction of the circular and longitudinal smooth muscle of the pig proximal urethra. J Urol. 2002;168:308–14.

    Article  CAS  Google Scholar 

  43. Greenland JE, Brading AF. The in vivo and in vitro effects of hypoxia on pig urethral smooth muscle. Br J Urol. 1997;79:525–31.

    Article  CAS  Google Scholar 

  44. Hashitani H, Suzuki H. Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol. 2007;583:505–19.

    Article  CAS  Google Scholar 

  45. Hashimoto Y, Ushiki T, Uchida T, Yamada J, Iwanaga T. Scanning electron microscopic observation of apical sites of open-type paraneurons in the stomach, intestine and urethra. Arch Histol Cytol. 1999;62:181–9.

    Article  CAS  Google Scholar 

  46. Thor KB, de Groat WC. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles. Am J Physiol Regul Integr Comp Physiol. 2010;299:R416–38.

    Article  CAS  Google Scholar 

  47. Bacsu CD, Chan L, Tse V. Diagnosing detrusor sphincter dyssynergia in the neurological patient. BJU Int. 2012;109(Suppl 3):31–4.

    Article  Google Scholar 

  48. Fowler CJ, Kirby RS. Abnormal electromyographic activity (decelerating bursts and complex repetitive discharges) in the striated muscle of the sphincter in 5 women with persisting urinary retention. Br J Urol. 1985;57:69–70.

    Google Scholar 

  49. Morgan DM, Umek W, Guire K, Morgan HK, Garabrant A, DeLancey JO. Urethral sphincter morphology and function with and without stress incontinence. J Urol. 2009;182:203–9.

    Article  Google Scholar 

  50. dell’atti L. Ultrasound evaluation of the striated urethral sphincter as a predictive parameter of urinary continence after radical prostatectomy. Arch Ital Urol Androl. 2016;87:317–21.

    Article  Google Scholar 

  51. Corona-Quintanilla DL, Castelan F, Fajardo V, Manzo J, Martinez-Gomez M. Temporal coordination of pelvic and perineal striated muscle activity during micturition in female rabbits. J Urol. 2009;181:1452–8.

    Article  Google Scholar 

  52. Arakawa T, Murakami G, Nakajima F, Matsubara A, Ohtsuka A, Goto T, et al. Morphologies of the interfaces between the levator ani muscle and pelvic viscera, with special reference to muscle insertion into the anorectum in elderly Japanese. Anat Sci Int. 2004;79:72–81.

    Article  Google Scholar 

  53. Helt M, Benson JT, Russell B, Brubaker L. Levator ani muscle in women with genitourinary prolapse: indirect assessment by muscle histopathology. Neurourol Urodyn. 1996;15:17–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Fry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fry, C., Jabr, R. (2019). The Integrated Physiology of the Lower Urinary Tract. In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics