Advertisement

Effects of Global Warming and Ocean Acidification on Carbonate Budgets of Eastern Pacific Coral Reefs

  • Derek P. Manzello
  • C. Mark Eakin
  • Peter W. Glynn
Part of the Coral Reefs of the World book series (CORW, volume 8)

Abstract

Eastern tropical Pacific (ETP) coral reefs provide a real-world example of reef growth, development, structure, and function under the high-pCO2, low aragonite saturation state (Ωarag) conditions expected for the entire tropical surface ocean with a doubling to tripling of atmospheric CO2. This provides a unique opportunity to examine various aspects of calcium carbonate (CaCO3) budgets in low-Ωarag conditions in the present day. Unlike anywhere else in the world, the ETP displays a continuum of thermal stress and CO2 inputs up to levels at which reef building is terminated and reef structures are lost. The response of coral reef CaCO3 budgets to El Niño warming across the ETP shows that reefs can be completely lost after experiencing a 2–3 °C thermal anomaly sustained in excess of two months during the warmest time of the year at Ωarag values expected for the rest of the tropics when atmospheric CO2 doubles. ETP coral reefs have persisted and shown resilience to this level of thermal stress or acidification when acting alone, but the combination of the two corresponded with the complete elimination of reef framework structures in the southern Galápagos Islands over the decade after the 1982–83 El Niño warming event. Reef carbonate degradation is exacerbated also by diverse agents of bioerosion such as sea urchins, boring bivalves, and excavating sponges, with experimental evidence demonstrating that the latter may even increase their activities during ocean warming and pH decline. This chapter reviews the CaCO3 budget of ETP coral reefs and discusses how a high-CO2 world may impact the major biotic and abiotic factors responsible for the cycling of carbonate materials. Coral reefs of the ETP serve as a model for conditions that will occur in other regions within a few decades.

Keywords

Climate change Aragonite saturation state Calcification Bioerosion Thermal stress 

Notes

Acknowledgements

We are grateful for funding from the National Oceanic and Atmospheric Administration’s Coral Reef Conservation Program and the National Science Foundation (OCE-00002317 and OCE-0526361 to PW Glynn). The contents of this chapter are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. Government.

References

  1. Adey WH (1978) Coral reef morphogenesis: a multidimensional model. Science 202:831–837CrossRefGoogle Scholar
  2. Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Nat Acad Sci USA 107:20400–20404Google Scholar
  3. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc Lond B 276:3019–3025Google Scholar
  4. Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516CrossRefGoogle Scholar
  5. Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers Mar Ecol Prog Ser 373:265–273Google Scholar
  6. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Nat Acad Sci USA 105:17442–17446Google Scholar
  7. Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Cao L, Marshall PA, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17:1798–1808CrossRefGoogle Scholar
  8. Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38CrossRefGoogle Scholar
  9. Bak RPM, Nieuwland G, Meesters EH (2009) Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? Bull Mar Sci 84:287–294Google Scholar
  10. Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766CrossRefGoogle Scholar
  11. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471CrossRefGoogle Scholar
  12. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741CrossRefGoogle Scholar
  13. Bates NR, Amat A, Andersson AJ (2009) The interaction of ocean acidification and carbonate chemistry on coral reef calcification: evaluating the carbonate chemistry Coral Reef Ecosystem Feedback (CREF) hypothesis on the Bermuda coral reef. Biogeosci Discuss 6:7627–7672CrossRefGoogle Scholar
  14. Bathurst RGC (1966) Boring algae, micrite envelopes, and lithification of molluscan biospartites. Geol J 5:15–32CrossRefGoogle Scholar
  15. Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 229:73–82CrossRefGoogle Scholar
  16. Berkelmans R, Willis B (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore central Great Barrier Reef. Coral Reefs 18:219–228CrossRefGoogle Scholar
  17. Brainard RE, Birkeland C, Eakin CM, McElhany P, Miller MW, Patterson M, Piniak GA, Dunlap MJ, Weijerman M (2013) Incorporating climate change and ocean acidification into extinction risk assessments for 82 coral species. Conserv Biol 27:1169–1178CrossRefGoogle Scholar
  18. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138CrossRefGoogle Scholar
  19. Buddemeier RW, Oberdorfer JA (1986) Internal hydrology and geochemistry of coral reefs and atoll islands: key to diagenetic variations. In: Schroeder JH, Purser BH (eds) Reef diagenesis. Springer, Heidelberg, pp 91–111CrossRefGoogle Scholar
  20. Bustamante RH, Okey TA, Banks S (2008) Biodiversity and food web structure of a Galápagos shallow rocky-reef ecosystem. In: McClanahan TR, Branch GM (eds) Food webs and the dynamics of marine reefs. Oxford Univ Press, Oxford, pp 135–161CrossRefGoogle Scholar
  21. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116CrossRefGoogle Scholar
  22. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  23. Calderón-Aguilera LE, Reyes Bonilla H, Carriquiry JD (2007) El papel de los arrecifes coralinos en el flujo de carbono en el océano: estudios en el Pacífico mexicano. In: Hernández de la Torre B, Gaxiola Castro G (eds) Carbono en ecosistemas acuáticos de México. México, SEMARNAT-INE-CICESE pp 215–226. ISBN: 978-968-817-855-3Google Scholar
  24. Cantera JR, Orozco C, Londoño-Cruz E, Toro G (2003) Abundance and distribution patterns of infaunal associates and macroborers of the branched coral in Gorgona Island. Bull Mar Sci 72:207–219Google Scholar
  25. Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008) Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Mar Ecol Prog Ser 356:113–122CrossRefGoogle Scholar
  26. Cohen AL, Holcomb M (2009) Why corals care about acidification: uncovering the mechanism. Oceanogr 22:118–127CrossRefGoogle Scholar
  27. Connell JH (1997) Disturbance and recovery of coral assemblages. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 9–22Google Scholar
  28. Cooper TF, De’ath G, Fabricius K, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Change Biol 14:529–538Google Scholar
  29. Cooper TF, O’Leary RA, Lough JA (2012) Growth of Western Australian corals in the Anthropocene. Science 335:593–596CrossRefGoogle Scholar
  30. Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46CrossRefGoogle Scholar
  31. Cortés J, Macintyre IG, Glynn PW (1994) Holocene growth history of an eastern Pacific fringing reef, Punta Islotes, Costa Rica. Coral Reefs 13:65–73CrossRefGoogle Scholar
  32. Dana TF (1975) Development of contemporary eastern Pacific coral reefs. Mar Biol 33:355–374CrossRefGoogle Scholar
  33. Darwin C (1842) The structure and distribution of coral reefs. Smith, Elder and Co, London, p 214Google Scholar
  34. D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacific shelf of Panamá and implications for the distribution of nutrients and chlorophyll. Est Coast Shelf Sci 73:325–340CrossRefGoogle Scholar
  35. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119Google Scholar
  36. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999Google Scholar
  37. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  38. Donner SD, Skirving WJ, Little CM, Hoegh-Guldberg O, Oppenheimer M (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Change Biol 11:2251–2265CrossRefGoogle Scholar
  39. Donner SD, Heron SF, Skirving WJ (2009) Future scenarios: a review of modelling efforts to predict the future of coral reefs in an era of climate change. In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer-Verlag, Berlin, pp 159–173CrossRefGoogle Scholar
  40. Eakin CM (1992) Post-El Niño panamanian reefs: less accretion, more erosion and damselfish protection. In: Proceedings of 7th International Coral Reef Symposium, vol 1, Guam, pp 387–396Google Scholar
  41. Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982-1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15:109–119Google Scholar
  42. Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panamá. Bull Mar Sci 69:171–186Google Scholar
  43. Eakin CM, Lough JM, Heron SF (2009) Climate variability and change: monitoring data and evidence for increased coral bleaching stress. In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer-Verlag, Berlin, pp 41–67CrossRefGoogle Scholar
  44. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5(11):e13969. doi: 10.1371/journal.pone.0013969 CrossRefGoogle Scholar
  45. Edmunds PJ (2007) Evidence for a decadal-scale decline in the growth rates of juvenile scleractinian corals. Mar Ecol Prog Ser 341:1–13CrossRefGoogle Scholar
  46. Enochs IC, Manzello DP, Carlton RD, Graham DM, Ruzicka R, Collela MA (2015) Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for the persistence of the Florida Reef Tract. Bull Mar Sci 91:271–290CrossRefGoogle Scholar
  47. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169 doi:  10.1038/NCLIMATE1122
  48. Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob Change Biol 19:3581–3591 doi: 10.1111/gcb.12334 Google Scholar
  49. Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S (2014) Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Change Biol 20:1043–1054 doi: 10.1111/gcb.12369 Google Scholar
  50. Feely RA, Doney SC, Cooley SR (2009) Present conditions and future changes in a high-CO2 world. Oceanography 22(4):37–47CrossRefGoogle Scholar
  51. Fonseca AC, Dean HK, Cortés J (2006) Non-colonial coral macro-borers as indicators of coral reef status in the south Pacific of Costa Rica. Rev Biol Trop 54:101–115CrossRefGoogle Scholar
  52. Friedrich T, Timmermann A, Abe-Ouchi A, Bates NR, Chikamoto MO, Church MJ, Dore JE, Gledhill DK, Gonzalez-Davila M, Heinemann M, Ilyina T, Jungclaus JH, McLeod E, Mouchet A, Santana-Casiano JM (2012) Detecting regional anthropogenic trends in ocean acidification against natural variability. Nat Clim Change 2:167–171 doi: 10.1038/NCLIMATE1372 Google Scholar
  53. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960CrossRefGoogle Scholar
  54. Glynn PW (1976) Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol Monogr 46:431–456CrossRefGoogle Scholar
  55. Glynn PW (1977) Coral growth in upwelling and nonupwelling areas off the Pacific coast of Panamá. J Mar Res 35:567–585Google Scholar
  56. Glynn PW (1983) Extensive ‘bleaching’ and death of reef corals on the Pacific coast of Panamá. Environ Conserv 10:149–154CrossRefGoogle Scholar
  57. Glynn PW (1984) Widespread coral mortality and the 1982/83 El Niño warming event. Environ Conserv 11:133–146CrossRefGoogle Scholar
  58. Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160Google Scholar
  59. Glynn PW (1990) Coral mortality and disturbance to coral reefs in the eastern tropical Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982-83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 55–126CrossRefGoogle Scholar
  60. Glynn PW (1991) Coral reef bleaching in the 1980s and possible connections with global warming. Trends Ecol Evol 6:175–179CrossRefGoogle Scholar
  61. Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17CrossRefGoogle Scholar
  62. Glynn PW (1994) State of coral reefs in the Galápagos Islands: natural vs. anthropogenic impacts. Mar Poll Bull 29:131–140CrossRefGoogle Scholar
  63. Glynn PW (2011) In tandem reef coral and cryptic metazoan declines and extinctions. Bull Mar Sci 87:767–794CrossRefGoogle Scholar
  64. Glynn PW, Macintyre IG (1977) Growth rate and age of coral reefs on the Pacific coast of Panama. In: Proceedings of 3rd International Coral Reef Symposium, vol 2, Miami, pp 251–259Google Scholar
  65. Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191CrossRefGoogle Scholar
  66. Glynn PW, de Weerdt (1991) Elimination of two reef-building hydrocorals following the 1982-83 El Niño warming event. Science 253:69–71CrossRefGoogle Scholar
  67. Glynn PW, Colgan MW (1992) Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the eastern Pacific. Am Zool 32:707–718CrossRefGoogle Scholar
  68. Glynn PW, Feingold J (1992) Hydrocoral species not extinct. Science 257:1845CrossRefGoogle Scholar
  69. Glynn PW, Maté JM (1997) Field guide to the Pacific coral reefs of Panamá. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 145–166Google Scholar
  70. Glynn PW, Fong P (2006) Patterns of reef coral recovery by the regrowth of surviving tissues following the 1997-98 EI Niño warming and 2000, 2001 upwelling events in Panamá, eastern Pacific. In: Proceedings of 10th International Coral Reef Symposium, vol 1, Okinawa, pp 624–630Google Scholar
  71. Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panama: structure, distribution, and predators. Geol Rundsch 61:483–519CrossRefGoogle Scholar
  72. Glynn PW, Wellington GM, Birkeland C (1979) Coral reef growth in the Galápagos: limitation by sea urchins. Science 203:47–49CrossRefGoogle Scholar
  73. Glynn PW, Maté JM, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panamá and Ecuador during the 1997-98 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982-83 event. Bull Mar Sci 69:79–110Google Scholar
  74. Glynn PW, Manzello DP (2015) Bioerosion and Coral Reef Growth: A Dynamic Balance. In: Birkeland C (ed) Coral Reefs in the Anthropocene. Springer, Dordrecht. pp. 67–97Google Scholar
  75. Glynn PW, Riegl B, Purkis S, Kerr JM, Smith TB (2015) Coral reef recovery in the Galápagos Islands: the northernnmost islands (Darwin and Wenman). Coral Reefs 34:421–436 doi: 10.1007/s00338-015-1280-4 Google Scholar
  76. Glynn PW, Gassman NJ, Eakin CM, Cortés J, Smith DB, Guzmán HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, Galápagos Islands (Ecuador). I. Pocilloporidae. Mar Biol 109:355–368CrossRefGoogle Scholar
  77. Glynn PW, Colley SB, Guzmán HM, Enochs IC, Cortés J, Maté JL, Feingold JS (2011) Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, Galápagos Islands (Ecuador). VI. Agariciidae. Pavona clavus. Mar Biol 158:1601–1617CrossRefGoogle Scholar
  78. Goreau TF, Hartman WD (1963) Boring sponges as controlling factors in the formation and maintenance of coral reefs. AAAS Spec Publ 75:25–54Google Scholar
  79. Goreau TF, Macfarlane AH (1990) Reduced growth rate of Montastraea annularis following the 1987–1988 coral bleaching event. Coral Reefs 8:211–215CrossRefGoogle Scholar
  80. Goreau TJ, Hayes RL (1994) Coral bleaching and ocean Hot Spots. Ambio 23:176–180Google Scholar
  81. Grigg RW (1998) Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. Coral Reefs 17:263–272CrossRefGoogle Scholar
  82. Guzmán HM, Cortés J (1989) Coral reef community structure at Caño Island. Pacific Costa Rica. PSZNI: Mar Ecol 10:23–41Google Scholar
  83. Guzmán HM, Robertson R (1989) Population and feeding responses of the corallivorous pufferfish Arothron meleagris to coral mortality in the eastern Pacific. Mar Ecol Prog Ser 55:121–131CrossRefGoogle Scholar
  84. Helmle KP, Dodge RE, Swart PK, Gledhill DK, Eakin CM (2011) Growth rates of Florida corals from 1937 to 1996 and their response to climate change. Nat Comm 2:215CrossRefGoogle Scholar
  85. Highsmith RC (1981) Coral bioerosion: damage relative to skeletal density. Am Nat 117:193–198CrossRefGoogle Scholar
  86. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwat Res 50:839–866CrossRefGoogle Scholar
  87. Hoegh-Guldberg O (2011) The impact of climate change on coral reef ecosystems. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 391–403CrossRefGoogle Scholar
  88. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefGoogle Scholar
  89. Hofman GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effects of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Ann Rev Ecol Evol Syst 41:127–147CrossRefGoogle Scholar
  90. Hubbard DK, Miller AI, Scutaro D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): applications to the nature of reef systems in the fossil record. J Sed Petrol 60:335–360Google Scholar
  91. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551CrossRefGoogle Scholar
  92. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933CrossRefGoogle Scholar
  93. Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–253CrossRefGoogle Scholar
  94. IPCC (2011) Summary for policymakers of the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), p 29Google Scholar
  95. IPCC (2013) Summary for policymakers. In: climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth assessment report of the intergovernmental panel on climate change In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge Univ Press, CambridgeGoogle Scholar
  96. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. contribution of Working Group II to the Fifth assessment report of the intergovernmental panel on climate change. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea P, White LL (eds) Cambridge Univ Press, CambridgeGoogle Scholar
  97. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638CrossRefGoogle Scholar
  98. James NP, Ginsburg RN, Marzalek DS, Choquette PW (1976) Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs. J Sed Petrol 46:523–544Google Scholar
  99. James NP, Ginsburg RN (1979) The seaward margin of Belize barrier and atoll reefs. Spec Pub Int Ass Sed Blackwell, Oxford, p 191Google Scholar
  100. Jones AM, Berkelmans R (2011) Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J Mar Bio. doi: 10.1155/2011/185890 Google Scholar
  101. Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Current Biol 23:912–918CrossRefGoogle Scholar
  102. Kinsey DW (1978) Productivity and calcification estimates using slack-water periods and field enclosures. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, pp 439–468Google Scholar
  103. Kleemann K (1990) Boring and growth in chemically boring bivalves from the Caribbean, Eastern Pacific and Australia’s Great Barrier Reef. Senck Marit Frankfurt/Main 21(1):101–154Google Scholar
  104. Kleemann K (2013) Fast and massive settlement of boring bivalves on coral slabs at Taboga Islands, Eastern Pacific, Panama. Boll Malacolog 49:104–113Google Scholar
  105. Kleypas JA, Eakin CM (2007) Scientists’ perceptions of threats to coral reefs: results of a survey of coral reef researchers. Bull Mar Sci 80:419–436Google Scholar
  106. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefGoogle Scholar
  107. Kobluk DR, Risk MJ (1977a) Micritization and carbonate-grain binding by endolithic algae. Am Assoc Petrol Geol Bull 61:1069–1082Google Scholar
  108. Kobluk DR, Risk MJ (1977b) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. J Sed Petrol 47:517–528Google Scholar
  109. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:1–16CrossRefGoogle Scholar
  110. LaJeunesse TC, Reyes-Bonilla H, Warner ME (2007) Spring “bleaching” among Pocillopora in the Sea of Cortez, Eastern Pacific. Coral Reefs 26:265–270CrossRefGoogle Scholar
  111. LaJeunesse TC, Reyes Bonilla H, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 53:719–727CrossRefGoogle Scholar
  112. Lazar B, Loya Y (1991) Bioerosion of coral reefs-a chemical approach. Limnol Oceanogr 36:377–383CrossRefGoogle Scholar
  113. Leder JJ, Szmant AM, Swart PK (1991) The effect of prolonged ‘bleaching’ on the stable isotope composition and banding patterns in Montastraea annularis. Preliminary observations. Coral Reefs 10:19–27CrossRefGoogle Scholar
  114. Leyte-Morales GE (2001) Estructura de la comunidad de corales y características geomorfológicas de los arrecifes coralinos de bahías de Huatulco, Oaxaca, México. MSc thesis, UMAR, p 94Google Scholar
  115. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  116. Lirman D, Glynn PW, Baker AC, Leyte-Morales GE (2001) Combined effects of three sequential storms on the Huatulco coral reef tract, Mexico. Bull Mar Sci 69:267–278Google Scholar
  117. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth of reef corals. Science 304:1492–1494CrossRefGoogle Scholar
  118. Logan CA, Dunne JP, Eakin CM, Donner SD (2014) Incorporating adaptive responses into future projections of coral bleaching. Glob Change Biol 20:125–139CrossRefGoogle Scholar
  119. Londoño-Cruz E, Cantera JR, Toro-Farmer G, Orozco C (2003) Internal bioerosion by macroborers in Pocillopora spp. in the Tropical Eastern Pacific. Mar Ecol Prog Ser 265:289–295CrossRefGoogle Scholar
  120. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243CrossRefGoogle Scholar
  121. Macintyre IG (1984) Preburial and shallow-subsurface alteration of modern scleractinian corals. In: Oliver WA, Sando WJ, Cairns SD, Coates AG, Macintyre IG, Bayer FM, Sorauf JE (eds) Recent advances in the paleobiology and geology of the Cnidaria. Palaeontogr Americana 54:229–244Google Scholar
  122. Macintyre IG (1997) Reevaluating the role of crustose coralline algae in the construction of coral reefs. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 725–730Google Scholar
  123. Macintyre IG, Marshall JF (1988) Submarine lithification in coral reefs: some facts and misconceptions. In: Proceedings of 6th International Coral Reef Symposium, vol 1, Townsville, pp 263–272Google Scholar
  124. Macintyre IG, Aronson RB (2006) Lithified and unlithified Mg-calcite precipitates in tropical reef environments. J Sed Res 76:81–90CrossRefGoogle Scholar
  125. Macintyre IG, Glynn PW, Cortés J (1992) Holocene reef history in the eastern Pacific: mainland Costa Rica, Caño Island, Cocos Island, and Galápagos Islands. In: Proceedings of 7th International Coral Reef Symposium, vol 2, Guam, pp 1174–1178Google Scholar
  126. Manzello DP (2009) Reef development and resilience to acute (El Niño warming) and chronic (high-CO2) disturbances in the eastern tropical Pacific: a real-world climate change model. In: Proceedings of 11th International Coral Reef Symposium, vol 1, Ft Lauderdale, pp 1299–1304Google Scholar
  127. Manzello DP (2010a) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248CrossRefGoogle Scholar
  128. Manzello DP (2010b) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758CrossRefGoogle Scholar
  129. Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci USA 105:10450–10455CrossRefGoogle Scholar
  130. Manzello DP, Enochs IC, Bruckner A, Renaud P, Kolodziej G, Budd D, Carlton R, Glynn PW (2014) Galápagos coral reef persistence after ENSO warming across an acidification gradient. Geophys Res Lett 41(24):9001–9008CrossRefGoogle Scholar
  131. Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015a) Recent decade of growth and calcification of Orbicella faveolata in the Florida keys: An inshore-offshore comparison. Mar Ecol Prog Ser 521:81–89CrossRefGoogle Scholar
  132. Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015b) Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida keys: the importance of thermal stress and inimical waters. J Exp Mar Biol Ecol 471:198–207CrossRefGoogle Scholar
  133. McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627CrossRefGoogle Scholar
  134. McPhaden M (1999) El Niño: the child prodigy of 1997-98. Nature 398:559–562CrossRefGoogle Scholar
  135. Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS ONE 6(1):e14521. doi: 10.1371/journal.pone.0014521 CrossRefGoogle Scholar
  136. Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnol Oceanogr 11:92–108CrossRefGoogle Scholar
  137. Nothdurft LD, Webb GE (2009) Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives. Facies 55:161–201CrossRefGoogle Scholar
  138. Nozagaray-López CO, Calderon-Aguilera LE, Hernández-Ayón JM, Reyes-Bonilla H, Carricart-Ganivet JP, Cabral-Tena RA, Balart EF (2014) Low calcification rates and calcium carbonate production in Porites panamensis at its northernmost geographic distribution. Mar Ecol. doi: 10.1111/maec.12227 Google Scholar
  139. Okey TA, Banks S, Born AF, Bustamante RH, Calvopiña M, Edgar GJ, Espinoza E, Fariña JM, Garske LE, Reck GK, Salazar S, Shepherd S, Toral-Granda V, Wallem P (2004) A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol Model 172:383–401CrossRefGoogle Scholar
  140. Orme GR (1977) Aspects of sedimentation in the coral reef environment. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol 4. Academic Press, New York, pp 129–176CrossRefGoogle Scholar
  141. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  142. Palacios MM, Muñoz CG, Zapata FA (2014) Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33:625–636 doi: 10.1007/s00338-014-1173-y Google Scholar
  143. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefGoogle Scholar
  144. Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation, and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Rev Sci 86:106–144CrossRefGoogle Scholar
  145. Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, Mumby PJ (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nat Comm 4:1–7CrossRefGoogle Scholar
  146. Rasser MW, Riegl B (2002) Holocene coral reef rubble and its binding agents. Coral Reefs 21:57–72CrossRefGoogle Scholar
  147. Reaka-Kudla ML, Feingold JS, Glynn PW (1996) Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands. Coral Reefs 15:109–119CrossRefGoogle Scholar
  148. Rees SA, Opdyke BN, Wilson PA, Henstock TJ (2007) Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26:177–188CrossRefGoogle Scholar
  149. Reid RP, Macintyre IG (1998) Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. J Sed Res 68:928–946CrossRefGoogle Scholar
  150. Reyes-Bonilla H (1993) Estructura de la comunidad, influencia de la depredación y biología poblacional de corales hermatípicos en el arrecife de Cabo Pulmo, BCS. MSc thesis, Centro de Investigación Científica y Enseñanza Superior de Ensenada, p 169Google Scholar
  151. Reyes Bonilla H, Alvarez del Castillo Cárdenas PA, Calderón Aguilera LE, Erosa Ricárdez CE, Fernández Rivera Melo FJ, Frausto TC, Luna Salguero BM, Moreno Sánchez XG, Mozqueda Torres MC, Norzagaray López CO, Petatán Ramírez D (2014) Servicios ambientales de arrecifes coralinos: el caso del Parque Nacional Cabo Pulmo, B.C.S. In: Urciaga García JI (ed) Desarrollo regional en Baja California Sur. Una perspectiva de los serviciosGoogle Scholar
  152. Reyes-Nivia C, Diaz-Pulido G, Kline D, Hoegh-Guldberg O, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob Change Biol 19:1919–1929CrossRefGoogle Scholar
  153. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668CrossRefGoogle Scholar
  154. Risk MJ, MacGeachy JK (1978) Aspects of bioerosion of modern Caribbean reefs. Rev Biol Trop 2:S85–S105Google Scholar
  155. Rodolfo-Metalpa R, Houlbrèque F, Tambutté E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer J (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308–312CrossRefGoogle Scholar
  156. Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastraea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. PSZNI: Mar Ecol 6:345–363CrossRefGoogle Scholar
  157. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  158. Schönberg CHL (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. PSZNI: Mar Ecol 23:313–326Google Scholar
  159. Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter IG, MacGeachy JK (1980) Calcium carbonate budget of a fringing reef on the west coast of Barbados. Part II—erosion, sediments and internal structure. Bull Mar Sci 30:475–508Google Scholar
  160. Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151CrossRefGoogle Scholar
  161. Scott PJB, Risk MJ, Carriquiry JD (1988) El Niño, bioerosion and the survival of east Pacific coral reefs. In: Proceedings of 6th International Coral Reef Symposium, vol 2, Townsville, pp 517–520Google Scholar
  162. Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606. doi: 10.1029/2008GL03628 CrossRefGoogle Scholar
  163. Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol. doi: 10.1155/2011/730715 Google Scholar
  164. Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528CrossRefGoogle Scholar
  165. Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. Proc Natl Acad Sci USA 94:8292–8299Google Scholar
  166. Tribble GW (1993) Organic matter oxidation and aragonite diagenesis in a coral reef. J Sed Petrol 63:523–527Google Scholar
  167. Tribble GW, Sansone FJ, Buddemeier RW, Li Y-H (1992) Hydraulic exchange between a coral reef and surface sea water. Geol Soc Am Bull 104:1280–1291Google Scholar
  168. Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef. Coral Reefs 24:422–434CrossRefGoogle Scholar
  169. Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21:424–432Google Scholar
  170. Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob Biogeochem Cycl 23:GB3008Google Scholar
  171. van Hooidonk R, Maynard J, Manzello DP, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Change Biol 20:103–112CrossRefGoogle Scholar
  172. Wang C, Weisberg RH (2000) The 1997–98 El Niño evolution relative to previous El Niño events. J Climate 13:488–501CrossRefGoogle Scholar
  173. Wellington GM, Glynn PW (2007) Responses of coral reefs to El Niño-Southern Oscillation sea-warming events. In: Aronson RB (ed) Geological approaches to coral reef ecology, Ecol Stud 192. Springer, New York, pp 342–385CrossRefGoogle Scholar
  174. Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7:e45124CrossRefGoogle Scholar
  175. Wisshak M, Schönberg CHL, Form A, Freiwald A (2013) Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge. Aquatic Biol 19:111–127CrossRefGoogle Scholar
  176. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53:315–324CrossRefGoogle Scholar
  177. Yates KK, Halley RB (2006) CO32− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosci Discuss 3:123–154CrossRefGoogle Scholar
  178. Zachos JC, Rohl R, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1611–1615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Derek P. Manzello
    • 1
  • C. Mark Eakin
    • 2
  • Peter W. Glynn
    • 3
  1. 1.Atlantic Oceanographic and Meteorological Laboratories (AOML)National Oceanic and Atmospheric Administration (NOAA)MiamiUSA
  2. 2.Coral Reef Watch, National Environmental Satellite Data and Information ServicesNational Oceanic and Atmospheric AdministrationSilver SpringUSA
  3. 3.Division of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceMiamiUSA

Personalised recommendations