Skip to main content

Coral Reef Bioerosion in the Eastern Tropical Pacific

  • Chapter
  • First Online:
Coral Reefs of the Eastern Tropical Pacific

Abstract

Bioerosion, the weakening and erosion of hard substrates by boring, etching, and grazing organisms, is a major structuring force on coral reefs of the Eastern Tropical Pacific (ETP). Bioerosional processes are the main source of reef erosion, and facilitate recycling of reefal carbonate. In healthy reefs, a dynamic balance exists between destructive (i.e. bioerosion) and constructive (i.e. bioaccretion) processes, allowing for maintenance and growth of reef frameworks. In changing environments, however, bioerosion rates can exceed those of coral calcification, leading to reduced reef development and the destruction of reef frameworks. In the ETP, high rates of bioerosion are promoted by nutrient-rich upwelling and high primary productivity conditions, recurrent coral bleaching and mortality events, and a chemical environment characterized by high-pCO2 and low aragonite saturation state. Here we examine bioerosion in ETP coral habitats and the variable roles of reef-dwelling bioeroder taxa: microbial euendoliths (microendoliths), sponges, polychaetes, sipunculans, crustaceans, molluscs, echinoids, and reef fishes. Among these agents of bioerosion, sponges, sipunculans, bivalves, and echinoderms have been relatively well studied in this region, while information is currently lacking or limited for microendolith assemblages, polychaetes and reef fishes. The frequency of coral invasion by clionaid sponges (e.g., Cliona vermifera and Thoosa mismalolli) is variable between ETP coral habitats. Dense boring sponge assemblages can lead to high rates of carbonate losses exceeding those of bioaccretion. Boring bivalves (i.e., species of Lithophaga and Gastrochaena) are very abundant on many actively accreting reefs and are generally more prominent contributors to reef erosion in the ETP than in other regions. Sea urchins are by far the most destructive grazers of coral substrates in habitats where abundant. Following ENSO-associated coral mortality events, intense bioerosion by sea urchins has impeded coral recovery and compromised reef health at many eastern Pacific sites. This chapter reviews factors important in ETP bioerosion, and current knowledge of bioeroder populations in the region.

In loving memory of our colleague Ana Cecilia Fonseca Escalante (1970–2013)

Dreaming about boring a tunnel to escape from prison?

Dreaming about boring a reef and discover its formation history?

Dreaming about boring a being to possess it?

Dreaming about boring an oil pit that attaches us to money? Or

Dreaming about boring a skeleton to keep enclosed?

It is finally just dreaming aboutboring to cope with boredom.

Revista de Biología Tropical 2006 54:101–115

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acker KL, Risk MJ (1985) Substrate destruction and sediment production by the boring sponge Cliona caribbaea on Grand Cayman Island. J Sed Petrol 56:705–711

    Google Scholar 

  • Alvarado JJ, Cortés J, Reyes-Bonilla H (2012) Reconstruction of Diadema mexicanum A. Agassiz, 1863 bioerosion impact on three Costa Rican Pacific coral reefs. Rev Biol Trop 60(Suppl 2):121–132

    Google Scholar 

  • Ansell AD, Nair NB (1969) The mechanisms of boring in Martesia striata Linné (Bivalvia: Pholadidae) and Xylophaga dorsalis Turton (Bivalvia: Xylophaginidae). Proc Royal Soc Lond Ser B Biol Sci 174(1034):123–133

    Google Scholar 

  • Appana SD, Vuki VC (2006) Bioerosion patterns and abundance and spatial distribution of Echinometra sp. A (green white tip) ecomorph on Nukubuco reef, Fiji. In: Proceedings of 10th International Coral Reef Symposium, Okinawa, pp 938–945

    Google Scholar 

  • Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:285–337

    Article  Google Scholar 

  • Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267–272

    Article  Google Scholar 

  • Bak RPM (1994) Sea urchin bioerosion on coral reefs: place in the carbonate budget and relevant variables. Coral Reefs 13:99–103

    Article  Google Scholar 

  • Bak RPM, van Eys G (1975) Predation of the sea urchin Diadema antillarum Philippi on living coral. Oecologia 20:111–115

    Article  Google Scholar 

  • Bak RPM, Carpay MJE, de Ruyter van Steveninck ED (1984) Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curaçao. Mar Ecol Prog Ser 17:105–108

    Article  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf S 80(4):435–471

    Article  Google Scholar 

  • Bautista-Guerrero E, Carballo JL, Maldonado M (2014) Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs? Coral Reefs 33(1):259–266

    Article  Google Scholar 

  • Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (Family Scaridae)—The ecological implications. Env Biol Fish 28:189–214

    Article  Google Scholar 

  • Benítez-Villalobos F, Domínguez-Gómez MT, López-Pérez RA (2008) Temporal variation of the sea urchin Diadema mexicanum population density at Bahías de Huatulco, Western Mexico. Rev Biol Trop 56(Suppl 3):255–263

    Google Scholar 

  • Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull 198:254–260

    Article  CAS  Google Scholar 

  • Birkeland C (1977) The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. In: Proceedings of 3rd International Coral Reef Symposium, vol 1, Miami, pp 15–21

    Google Scholar 

  • Birkeland C (1989) The influence of echinoderms on coral-reef communities. In: Jangoux M, Lawrence JM (eds) Echinoderm Studies 3. Balkema, Rotterdam, pp 1–79

    Google Scholar 

  • Blake JA (1991) The polychaete fauna of the Galápagos Islands. In: James MJ (ed) Galápagos marine invertebrates. Taxonomy, biogeography, and evolution in Darwin’s Islands. Plenum Press, New York, pp 75–96

    Google Scholar 

  • Brown-Saracino J, Peckol P, Curran HA, Robbart ML (2007) Spatial variation in sea urchins, fish predators, and bioerosion rates on coral reefs of Belize. Coral Reefs 26:71–78

    Article  Google Scholar 

  • Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71

    Article  Google Scholar 

  • Cailliaud F (1843) Notice sur le genre Gatrochène. Mag Zool 1843:1–10

    Google Scholar 

  • Cailliaud F (1850) Nouvelles obvservations au sujet de la perforation des pierres par les mollusques. J Conchol 1:363

    Google Scholar 

  • Calcinai B, Azzini F, Bavestrello G, Gaggero L, Cerrano C (2007) Excavating rates and boring pattern of Cliona albimarginata (Porifera: Clionaidae) in different substrata. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Museu Nacional, Rio de Janeiro, pp 203–207

    Google Scholar 

  • Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431

    Article  Google Scholar 

  • Cantera JR, Zapata F, Forero P, Francisco V, Jiménez JM, Londoño E, Narvaez K, Neira R, Orozco CA, Toro-Farmer G (2001) Organismos bioerosionadores en arrecifes de Isla Gorgona. In: Barrios LM, López-Victoria M (eds) Gorgona marina: contribución al conocimiento de una isla única, Serie Publicaciones Especiales 7. INVEMAR, Magdalena, pp 51–64

    Google Scholar 

  • Cantera JR, Orozco C, Londoño-Cruz E, Toro G (2003) Abundance and distribution patterns of infaunal associates and macroborers of the branched coral in Gorgona Island. Bull Mar Sci 72:207–219

    Google Scholar 

  • Carballo JL, Sánchez-Moyano JE, García Gómez JC (1994) Taxonomic and ecological remarks on boring sponges (Clionidae) from the Straits of Gibraltar (southern Spain): tentative bioindicators? Zool J Lin Soc 112:407–424

    Article  Google Scholar 

  • Carballo JL, Cruz-Barraza JA, Gómez P (2004) Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zool J Lin Soc 141:353–397

    Article  Google Scholar 

  • Carballo JL, Hepburn L, Nava H, Cruz-Barraza JA, Bautista-Guerrero E (2007) Coral boring Aka-species (Porifera: Phloeodictyidae) from Mexico with description of Aka cryptica sp. nov. J Mar Biol Assoc UK 87:1477–1484

    Article  Google Scholar 

  • Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008) Boring sponges and the modelling of coral reefs in the East Pacific Ocean. Mar Ecol Prog Ser 356:113–122

    Article  Google Scholar 

  • Carballo JL, Cruz-Barraza JA, Nava H, Bautista E (2010a) Esponjas perforadoras de sustratos calcáreos: importancia en los ecosistemas arrecifales del Pacífico este. Rev Biol Trop 58:1591–1592

    Google Scholar 

  • Carballo JL, Bautista-Guerrero E, Nava H, Cruz Barraza JA (2010b) Cambio climático y ecosistemas costeros. Bases fundamentales para la conservación de los arrecifes de coral del Pacífico Este. In: Hernández-Zanuy AC, Alcolado PM (eds) La biodiversidad en ecosistemas marinos y costeros del litoral de Iberoamérica y el cambio climático: I. Red Cyted Biodivmar, Havana, pp 183–193

    Google Scholar 

  • Carballo JL, Bautista-Guerrero E, Nava H, Cruz-Barraza JA, Chávez JA (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 4:872–886

    Article  Google Scholar 

  • Carreiro-Silva M, McClanahan TR (2001) Echinoid bioerosion and hervibory on Kenyan coral reefs: the role of protection from fishing. J Exp Mar Biol Ecol 262:133–153

    Article  Google Scholar 

  • Carter JG (1978) Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the evolution of the endolithic habitat. Peabod Mus Nat Hist Yale Univ Bull 41:48–51

    Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeogr Palaeocl 113(2):189–198

    Article  Google Scholar 

  • Colgan M (1990) El Niño and the history of Eastern Pacific reef building. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 183–232

    Chapter  Google Scholar 

  • Conand C, Chabanet P, Cuet P, Letourneur Y (1997) The carbonate budget of a fringing reef in La Réunion Island (Indian Ocean): sea urchin and fish bioerosion and net calcification. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 953–958

    Google Scholar 

  • Cortés J (1985) Preliminary observations of Alpheus simus Guérin-Méneville, 1856 (Crustacea: Alpheidae): a little-known Caribbean bioeroder. In: Proceedings of 5th International Coral Reef Congress, vol 5, Tahiti, pp 351–353

    Google Scholar 

  • Cortés J (1991) Los arrecifes coralinos del Golfo Dulce, Costa Rica: aspectos geológicos. Rev Geol Amer Central 13:15–24

    Google Scholar 

  • Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16(Suppl):S39–S46

    Google Scholar 

  • Cortés J, Jiménez C (2003) Corals and coral reefs of the Pacific of Costa Rica: history, research and status. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 361–385

    Google Scholar 

  • Cruz-Barraza JA, Carballo JL (2008) Taxonomy of sponges associated with corals from the Mexican Pacific Ocean. Zool Stud 47:741–758

    Google Scholar 

  • Cutler EB (ed) (1994) The Sipuncula: their systematics, biology, and evolution. Cornell University Press, Ithaca, p 453

    Google Scholar 

  • Cutler NJ, Cutler EB, Vargas JA (1992) Peanut worms (phylum Sipuncula) from Costa Rica. Gusanos maní (phylum Sipuncula) de Costa Rica. Rev Biol Trop 40:153–158

    Google Scholar 

  • Davies PJ, Hutchings PA (1983) Initial colonization, erosion and accretion on coral substrate: experimental results, Lizard Island, Great Barrier Reef. Coral Reefs 2:27–35

    Article  Google Scholar 

  • Dean HK, Sibaja-Cordero JA, Cortés J (2010) Sipunculans and echiurans of Isla del Coco (Cocos Island), Costa Rica. Zootaxa 2557:60–68

    Google Scholar 

  • DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y (2015) Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10

    Article  CAS  Google Scholar 

  • Deshayes GP (1850) Traité élémentaire de conchyliologie: avec les applications de cette science à la géologie. Tome premier. Seconde partie. V Mason, Paris, p 824

    Google Scholar 

  • Downing N, El-Zahr CR (1987) Gut evacuation and filling rates in the rock-boring sea urchin, Echinometra mathaei. Bull Mar Sci 41:579–584

    Google Scholar 

  • Duckworth AR, Peterson BJ (2013) Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar Biol 160:27–35

    Article  CAS  Google Scholar 

  • Eakin CM (1987) Damselfishes and their algal lawns: a case of plural mutualism. Symbiosis 4(1–3):275–288

    Google Scholar 

  • Eakin CM (1988) Avoidance of damselfish lawns by the sea urchin Diadema mexicanum at Uva Island, Panama. In: Proceedings of 6th International Coral Reef Symposium, vol 2, Townsville, pp 21–26

    Google Scholar 

  • Eakin CM (1991) The damselfish-algal lawn symbiosis and its influence on the bioerosion of an El Niño impacted coral reef, Uva Island, Pacific Panama. PhD Dissert, Univ Miami, Coral Gables, Florida, p 158

    Google Scholar 

  • Eakin CM (1992) Post-El Niño Panamanian reefs: less accretion, more erosion and damselfish protection. In: Proceedings of 7th International Coral Reef Symposium, vol 1, Guam, pp 387–396

    Google Scholar 

  • Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets befote and after the 1982–1983 El Niño at Uva Island in the Eastern Pacific. Coral Reefs 15:109–119

    Google Scholar 

  • Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull Mar Sci 69:171–186

    Google Scholar 

  • Edgar GJ, Banks SA, Bessudo S, Cortés J, Guzman HM, Henderson S, Martinez C, Rivera F, Soler G, Ruiz D, Zapata FA (2011) Variation in reef fish and invertebrate communities with level of protection from fishing across the eastern tropical Pacific seascape. Glob Ecol Biogeogr 20(5):730–743

    Google Scholar 

  • Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722

    Article  Google Scholar 

  • Enochs IC, Manzello DP (2012) Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31:653–661

    Article  Google Scholar 

  • Fauchald K (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Nat Hist Mus LA County, Los Angeles, pp 1–188

    Google Scholar 

  • Fewkes W (1890) Sea-urchin excavations at Guaymas, Mexico. Am Nat 24:478–480

    Google Scholar 

  • Fonseca AC, Cortés J (1998) Coral borers of the eastern Pacific: Aspidosiphon (A.) elegans (Sipuncula: Aspidosiphonidae) and Pomatogebia rugosa (Crustacea: Upogebiidae). Pac Sci 52:170–175

    Google Scholar 

  • Fonseca AC, Dean HK, Cortés J (2006) Non-colonial coral macro-borers as indicators of coral reef status in the south Pacific of Costa Rica. Rev Biol Trop 54:101–115

    Article  CAS  Google Scholar 

  • Francisco V (2000) Determinación de las tasas de bioerosión por peces balístidos en un arrecife coralino del Pacífico colombiano. MSc Thesis, Universidad del Valle, Cali, Colombia, p 65

    Google Scholar 

  • Fütterer DK (1974) Significance of the boring sponge Cliona for the origin of fine grained material of carbonate sediments. J Sed Petrol 44:79–84

    Google Scholar 

  • Gilchrist S (1985) Hermit crab corallivore activity. In: Proceedings of 5th International Coral Reef Symposium, vol 5, Tahiti, pp 211–214

    Google Scholar 

  • Glynn PW (1973) Acanthaster: effect on coral reef growth in Panama. Science 180(4085):504–506

    Article  CAS  Google Scholar 

  • Glynn PW (1984) Widespread coral mortality and the 1982/83 El Niño warming event. Environ Conserv 11(2):133–146

    Article  Google Scholar 

  • Glynn PW (1985) Corallivore population sizes and feeding effects following El Niño (1982–1983) associated coral mortality in Panama. In: Proceedings of 5th International Coral Reef Symposium, vol 4, Tahiti, pp 183–188

    Google Scholar 

  • Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160

    Google Scholar 

  • Glynn PW (1990) Coral mortality and disturbances to coral reefs in the tropical eastern Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 55–126

    Chapter  Google Scholar 

  • Glynn PW (1994) State of coral reefs in the Galápagos Islands: natural vs anthropogenic impacts. Mar Pollut Bull 29(1):131–140

    Article  CAS  Google Scholar 

  • Glynn PW (1997) Bioerosion and coral-reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 68–95

    Chapter  Google Scholar 

  • Glynn PW (2004) High complexity food webs in low-diversity Eastern Pacific reef-coral communities. Ecosystems 7:358–367

    Article  Google Scholar 

  • Glynn PW (2008) Food-web structure and dynamics of eastern tropical Pacific coral reefs: Panamá and Galápagos Islands. In: McClanahan TR, Branch GM (eds) Food webs and the dynamics of marine reefs. Oxford University Press, Oxford, pp 185–208

    Chapter  Google Scholar 

  • Glynn PW, Macintyre IG (1977) Growth rate and age of coral reefs on the Pacific coast of Panama. In: Proceedings of 3rd International Coral Reef Symposium, vol 2, Miami, pp 251–259

    Google Scholar 

  • Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands (with an annotated list of the scleractinian corals of the Galápagos by JW Wells). Univ California Press, Berkeley, p 330

    Google Scholar 

  • Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panama: structure, distribution and predators. Geol Rundsch 61(2):483–519

    Article  Google Scholar 

  • Glynn PW, Wellington GM, Birkeland C (1979) Coral reef growth in the Galápagos: limitation by sea urchins. Science 203:47–49

    Article  CAS  Google Scholar 

  • Glynn PW, Gassman NJ, Eakin CM, Cortés J, Smith DB, Guzman HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama and Galápagos Islands (Ecuador). I. Pocilloporidae. Mar Biol 109:355–368

    Google Scholar 

  • Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69(1):79–109

    Google Scholar 

  • Glynn PW, Riegl BM, Purkis S, Kerr J, Smith T (2015) Coral reef recovery in the Galápagos Islands: the northern-most islands (Darwin and Wenman). Coral Reefs 34(2):421–436

    Article  Google Scholar 

  • Goreau TF, Hartman WD (1963) Boring sponges as controlling factors in the formation and maintenance of coral reefs. Am Assoc Advan Sci Publ 75:25–54

    Google Scholar 

  • Griffin SP, García RP, Weil E (2003) Bioerosion in coral reef communities in southwest Puerto Rico by the sea urchin Echinometra viridis. Mar Biol 143:79–84

    Article  Google Scholar 

  • Gutner-Hoch E, Fine M (2011) Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs 30:643–650

    Article  Google Scholar 

  • Guzman HM (1986) Estructura de la comunidad arrecifal de la Isla del Caño, Costa Rica, y el efecto de perturbaciones naturales severas. MS thesis, Universidad de Costa Rica, San José, Costa Rica, p 179

    Google Scholar 

  • Guzman HM (1988) Distribución y abundancia de organismos coralívoros en los arrecifes coralinos de la Isla del Caño, Costa Rica. Rev Biol Trop 36(2):191–207

    Google Scholar 

  • Guzman HM (1991) Restoration of coral reefs in Pacific Costa Rica. Conser Biol 5:189–195

    Google Scholar 

  • Guzman HM, Cortés J (1992) Isla del Coco (Pacific of Costa Rica) coral reefs after the 1982–83 El Niño disturbance. Rev Biol Trop 40:309–324

    Google Scholar 

  • Guzman HM, Cortés J (1993) Arrecifes coralinos del Pacífico Oriental Tropical: revisión y perspectivas. Rev Biol Trop 41:535–557

    Google Scholar 

  • Guzman HM, Cortés J (2007) Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar Biol 151:401–411

    Google Scholar 

  • Guzman HM, López JV (1991) Diet of the corallivorous pufferfish Arothron meleagris (Pisces: Tetraodontidae) at Gorgona Island, Colombia. Rev Biol Trop 39:203–206

    Google Scholar 

  • Guzman HM, Robertson DR (1989) Population and feeding responses of the corallivorous pufferfish Arothron meleagris to coral mortality in the Eastern Pacific. Mar Ecol Prog Ser 55:121–131

    Google Scholar 

  • Haigler SM (1969) Boring mechanism of Polydora websteri inhabiting Crassostrea virginica. Am Zool 9:821–828

    Article  Google Scholar 

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimat Palaeoecol 62:275–291

    Article  Google Scholar 

  • Hassan M (1988) Modification of carbonate substrata by bioerosion and bioaccretion on coral reefs of the Red Sea. Shaker Verlag, Aachen, p 124

    Google Scholar 

  • Hein FJ, Risk MJ (1975) Bioerosion of coral heads: inner patch reefs, Florida Reef Tract. Bull Mar Sci 25:133–138

    Google Scholar 

  • Herrera-Escalante T, López-Pérez RA, Leyte-Morales GE (2005) Bioerosion caused by the sea urchin Diadema mexicanum (Echinodermata: Echinoidea) at Bahías de Huatulco, Western Mexico. Rev Biol Trop 53(Suppl 3):263–273

    Google Scholar 

  • Hibino K, Van Woesik R (2000) Spatial differences and seasonal changes of net carbonate accumulation on some coral reefs of the Ryukyu Islands, Japan. J Exp Mar Biol Ecol 252:1–14

    Article  CAS  Google Scholar 

  • Highsmith RC (1980) Geographic patterns of coral bioerosion: a productivity hypothesis. J Exp Mar Biol Ecol 46:177–196

    Article  Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226

    Article  Google Scholar 

  • Highsmith RC, Lueptow RL, Schonberg SC (1983) Growth and bioerosion of three massive corals on the Belize barrier reef. Mar Ecol Prog Ser 13(2–3):261–271

    Article  Google Scholar 

  • Hunter IG (1977) Sediment production by Diadema antillarum on a Barbados fringing reef. In: Proceedings of 3th International Coral Reef Symposium, vol 2, Miami, pp 105–109

    Google Scholar 

  • Hueerkamp C, Glynn PW, D'Croz L, Maté JL, Colley SB (2001) Bleaching and recovery of five eastern Pacific corals in an El Niño-related temperature experiment. B Mar Sci 69(1):215–236.

    Google Scholar 

  • Hutchings PA (1981) Polychaete recruitment on to dead coral substrates at Lizard Island, Great Barrier Reef, Australia. Bull Mar Sci 31:410–423

    Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252

    Article  Google Scholar 

  • Hutchings PA (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 249–264

    Chapter  Google Scholar 

  • Hutchings PA (2011) Bioerosion. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form, and process. Springer, Berlin, pp 139–156

    Chapter  Google Scholar 

  • Hutchings PA, Peyrot-Clausade M (1989) Macro-boring communities of Porites. A biological comparison. In: Proceedings of 6th International Coral Reef Symposium, vol 3, Townsville, pp 263–268

    Google Scholar 

  • Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Biol Ecol 269(1):101–121

    Article  Google Scholar 

  • Hutchings PA, Kiene WE, Cummingham RB, Donnelly C (1992) Spatial and temporal patterns of non-colonial boring organisms: (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11:23–31

    Article  Google Scholar 

  • Hutchings PA, Peyrot-Clausade M, Osorno A (2005) Influence of land runoff on rates and agents of bioerosion of coral substrates. Mar Poll Bull 51:438–447

    Article  CAS  Google Scholar 

  • Jaccarini V, Bannister WH, Micallef H (1968) The pallial glands and rock boring in Lithophaga lithophaga (Lamellibranchia, Mytilidae). J Zool 154(4):397–401

    Article  Google Scholar 

  • Jiménez C (1996–1997) Coral colony fragmentation by whitetip reef sharks at Coiba Island National Park, Panamá. Rev Biol Trop 45(1B):698–700

    Google Scholar 

  • Jiménez JM (1999) Scarus ghobban (Pisces: Scaridae) en Isla Gorgona (Pacífico Oriental Tropical): abundancia, comportamiento alimenticio y papel en la bioerosión de arrecifes. BSc thesis, Univ del Valle, Cali, Colombia, p 74

    Google Scholar 

  • Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98

    Article  Google Scholar 

  • Kinsey DW (1985) Metabolism, calcification and carbon production. I. Systems level studies. In: Proceedings of 5th International Coral Reef Congress, vol 4, Tahiti, pp 505–526

    Google Scholar 

  • Kleemann K (1973) Lithophaga lithophaga (L.) (Bivalvia) in different limestones. Malacologia 14:345–347

    Google Scholar 

  • Kleemann K (1974) Beitrag zur Kenntnis des Verhaltens von Lithophaga lithophaga (L.) (Bivalvia) im Bohrloch. Sitzubgsberichte Österr Akad Wiss (math-naturw Kl, Abt. I) 182:201–210

    Google Scholar 

  • Kleemann KH (1977) A new species of Lithophaga (Bivalvia) from the Great Barrier Reef, Australia. Veliger 20(2):151–154

    Google Scholar 

  • Kleemann KH (1980) Boring bivalves and their host corals from the Great Barrier Reef. J Moll Stud 46:13–54

    Google Scholar 

  • Kleemann KH (1982) Ätzmuscheln im Ghetto? Lithophaga (Bivalvia) aus dem Leithakalk (Mittel-Miozän: Badenian) von Müllendorf im Wiener Becken, Österreich. Beitr Paläonto Österr 9:211–231

    Google Scholar 

  • Kleemann K (1986) Lithophagines (Bivalvia) from the Caribbean and the Eastern Pacific. In: Proceedings of 8th International Coral Reef Congress, Budapest, pp 113–118

    Google Scholar 

  • Kleemann K (1990) Boring and growth in chemically boring bivalves from the Caribbean, Eastern Pacific and Australia’s Great Barrier Reef. Senck Marit 21:101–154

    Google Scholar 

  • Kleemann K (1992) Coral communities and coral-bivalve associations in the northern Red Sea at Safaga, Egypt. Facies 26:1–10

    Article  Google Scholar 

  • Kleemann K (1995) Associations of coral and boring bivalves: Lizard Island (Great Barrier Reef, Australia) versus Safaga (N Red Sea). Beitr Paläont 20:31–39

    Google Scholar 

  • Kleemann K (1996) Biocorrosion by bivalves. PSZNI Mar Ecol 17(1–3):145–158

    Article  CAS  Google Scholar 

  • Kleemann K (2008) Lithophaga (Leiosolenus) purpurea (Bivalvia: Mytilidae): one species becomes three. Club Conchylia Informationen 39(3/4):32–45

    Google Scholar 

  • Kleemann K (2013) Fast and massive settlement of boring bivalves on coral slabs at Taboga Islands, Eastern Pacific, Panama. Boll Malacol 49:104–113

    Google Scholar 

  • Kleemann K, Hoeksema BW (2002) Lithophaga (Bivalvia, Mytilidae), including a new species, boring into mushroom corals (Scleractinia, Fungiidae) off South Sulawesi, Indonesia. Basteria 66:11–24

    Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine C, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and USGS, p 88

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Lazar B, Loya Y (1991) Bioerosion of coral reefs—A chemical approach. Limnol Oceanogr 36:377–383

    Article  CAS  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  • Londoño-Cruz E (2001) Proceso de bioerosión por organismos perforadores en un ecosistema arrecifal del Pacífico Oriental Tropical (Isla Gorgona, Colombia). MSc Thesis, Universidad del Valle, Cali, Colombia, p 56

    Google Scholar 

  • Londoño-Cruz E, Cantera JR, Toro-Farmer G, Orozco C (2003) Internal bioerosion by macroborers in Pocillopora spp. in the Tropical Eastern Pacific. Mar Ecol Prog Ser 265:289–295

    Google Scholar 

  • MacGeachy JK (1977) Factors controlling sponge boring in Barbados reef corals. In: Proceedings of 3rd International Coral Reef Symposium, vol 2, Miami, pp 477–483

    Google Scholar 

  • Manzello DP (2010a) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Manzello DP (2010b) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248

    Article  CAS  Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci USA 105(30):10450–10455

    Google Scholar 

  • McClanahan TR, Muthiga NA (1988) Changes in Kenyan coral reef community structure and function due to exploitation. Hydrobiologia 166:269–276

    Article  Google Scholar 

  • McClanahan TR, Nugues M, Mwachireya S (1994) Assaying fish and sea urchin herbivory and competition in Kenyan coral reef lagoons. J Exp Mar Biol Ecol 184:237–254

    Article  Google Scholar 

  • Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107(2):308–341

    Google Scholar 

  • Mokady O, Lazar B, Loya Y (1996) Echinoid bioerosion as a major structuring force of Red Sea coral reefs. Biol Bull 190:367–372

    Article  Google Scholar 

  • Moreno XG, Abitia LA, Favila A, Gutiérrez FJ, Palacios DS (2009) Ecología trófica del pez Arothron meleagris (Tetraodontiformes: Tetraodontidae) en el arrecife de Los Frailes, Baja California Sur, México. Rev Biol Trop 57:113–123

    Google Scholar 

  • Morton B (1990) Corals and their bivalve borers: the evolution of a symbiosis. In: Morton B (ed) The Bivalvia: proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge (1899–1986) at the 9th international malacological congress, 1986, Edinburgh, Scotland, UK. Hong Kong University Press, Hong Kong, pp 11–46

    Google Scholar 

  • Morton B, Scott PJB (1980) Morphological and functional specializations of the shell, musculature and pallial glands in the Lithophaginae (Mollusca: Bivalvia). J Zool 192(2):179–203

    Article  Google Scholar 

  • Mumby PJ, Hedley JD, Zychaluk K, Harborne AR, Blackwell PG (2006) Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol Mod 196:131–148

    Article  Google Scholar 

  • Muricy G (1991) Structure des peuplements de spongiaires autour de l’égout de Cortiou (Marseille, France). Vie Milieu 41(4):205–221

    Google Scholar 

  • Nava H, Carballo JL (2008) Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J Exp Biol 211(17):2827–2831

    Article  Google Scholar 

  • Nava H, Carballo JL (2013) Environmental factors shaping boring sponge assemblages at Mexican Pacific coral reefs. Mar Ecol 34(3):269–279

    Article  CAS  Google Scholar 

  • Neudecker S (1979) Effects of grazing and browsing fishes on the zonation of corals in Guam. Ecology 60(4):666–672

    Article  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Ogden JC (1977) Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates-ecology and sedimentology. Am Assoc Petrol Geol Stud Geol 4:281–288

    Google Scholar 

  • Okey TA, Banks S, Born AF, Bustamante RH, Calvopiña M, Edgar GJ, Espinoza E, Fariña JM, Garske LE, Reck GK, Salazar S (2004) A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol Model 172(2):383–401

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Google Scholar 

  • Osorno A, Peyrot-Clausade M, Hutchings PA (2005) Patterns and rates of erosion in dead Porites across the Great Barrier Reef (Australia) after 2 years and 4 years of exposure. Coral Reefs 24(2):292–303

    Article  Google Scholar 

  • Ovalle H (2011) Cuantificación de la erosión por esponjas perforadoras en comunidades arrecifales del Pacífico Mexicano. Licentiate thesis, Facultad de Ciencias del Mar, Univ Autónoma de Sinaloa, Sinaloa, Mexico

    Google Scholar 

  • Pacheco-Solano C (2011) Estudio taxonómico de las esponjas perforadoras (Porifera, Demospongiae) de arrecifes de coral del Pacífico de Costa Rica. Licentiate thesis, Escuela de Biología, Univ de Costa Rica, San José, Costa Rica

    Google Scholar 

  • Palacios MM, Muñoz CG, Zapata FA (2014) Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33:625–636

    Article  Google Scholar 

  • Pari N, Peyrot-Clausade M, LeCampion-Alsumard T, Hutchings P, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119–130

    Article  Google Scholar 

  • Perry CT (1998) Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17(2):277–287

    Article  Google Scholar 

  • Perry CT, Spencer T, Kench PS (2008) Carbonate budgets and reef production states: a geomorphic perspective on the ecological phase-shift concept. Coral Reefs 27:853–866

    Article  Google Scholar 

  • Peyrot-Clausade M, Chabanet P, Conand C, Fontaine MF, Letourner Y, Harmelin-Vivien H (2000) Sea urchin and fish bioerosion on La Réunion and Moorea reefs. Bull Mar Sci 66:477–485

    Google Scholar 

  • Pojeta J Jr, Palmer TJ (1976) The origin of rock boring in mytilacean pelecypods. Alcheringa 1(2):167–179

    Article  Google Scholar 

  • Pomponi SA (1977) Etching cells of boring sponges: an ultrastructural analysis. In: Proceedings of 3th International Coral Reef Symposium, vol 2, Miami, pp 485–490

    Google Scholar 

  • Reaka-Kudla ML, Feingold JS, Glynn PW (1996) Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands. Coral Reefs 15:101–107

    Article  Google Scholar 

  • Reyes-Bonilla H (2003) Coral reefs of the Pacific coast of Mexico. In: Cortés J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 331–349

    Chapter  Google Scholar 

  • Reyes-Bonilla H, Calderón-Aguilera LE (1999) Population density, distribution and consumption rates of three corallivores at Cabo Pulmo reef, Gulf of California. PZNSI Mar Ecol 20:347–357

    Article  Google Scholar 

  • Rice ME (1969) Possible boring structures of sipunculids. Am Zool 9(3):803–812

    Article  Google Scholar 

  • Rice ME, Macintyre IG (1972) A preliminary study of sipunculan burrows in rock thin sections. Carib J Sci 12(1–2):41–43

    Google Scholar 

  • Richmond RH (1985) Variations in the population biology of Pocillopora damicornis across the Pacific. In: Proceedings of 5th International Coral Reef Congress, vol 6, Tahiti, pp 101–106

    Google Scholar 

  • Richmond RH (1987) Energetic relationships and biogeographical differences among fecundity, growth, and reproduction in the reef coral, Pocillopora damicornis. Bull Mar Sci 41:595–604

    Google Scholar 

  • Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91

    Article  Google Scholar 

  • Ruengsawang N, Yeemin T (2000) Bioerosion caused by grazing activities on coral communities in the Gulf of Thailand. In: Proceedings of 9th International Coral Reef Symposium, vol 1, Bali, pp 289–294

    Google Scholar 

  • Russo AR (1980) Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands. J Mar Res 38:99–110

    Google Scholar 

  • Ruttenberg BI (2001) Effects of artisanal fishing on marine communities in the Galapagos Islands. Conserv Biol 15(6):1691–1699

    Google Scholar 

  • Rützler K (1971) Bredin-Archbold-Smithsonian Biological Survey of Dominica: burrowing sponges, genus Siphonodictyon Bergquist, from the Caribbean. Smith Contr Zool 77:1–37

    Article  Google Scholar 

  • Rützler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19:203–216

    Article  Google Scholar 

  • Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72

    Google Scholar 

  • Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162

    Article  Google Scholar 

  • Sammarco PW (1980) Diadema and its relationship to coral spat mortality: grazing, competition and biological disturbance. J Exp Mar Biol Ecol 45:245–472

    Article  Google Scholar 

  • Sammarco PW (1982a) Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J Exp Mar Biol Ecol 61:31–55

    Article  Google Scholar 

  • Sammarco PW (1982b) Effects of grazing by Diadema antillarum Phillipi (Echinodermata: Echinoidea) on algal diversity and community structure. J Exp Mar Biol Ecol 65:83–105

    Article  Google Scholar 

  • Sammarco PW, Levington JS, Ogden JC (1974) Grazing and control of coral reef community structure by Diadema antillarum Phillipi (Echinodermata: Echinoidea): a preliminary study. J Mar Res 32:47–53

    Google Scholar 

  • Schoënberg CH (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. Mar Ecol 23(4):313–326

    Google Scholar 

  • Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202

    Chapter  Google Scholar 

  • Schönberg CHL, Ortiz JC (2009) Is sponge bioerosion increasing? In: Proceedings of 11th International Coral Reef Symposium, Ft. Lauderdale, pp 520–523

    Google Scholar 

  • Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter JG, MacGeachy JK (1980) Calcium carbonate budget of fringing reef of the west coast of Barbados. Part II. Erosion, sediments and internal structure. Bull Mar Sci 30:475–508

    Google Scholar 

  • Scott PJB, Risk MJ (1988) The effects of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151

    Article  CAS  Google Scholar 

  • Scott PJB, Risk MJ, Carriquiry JD (1988) El Niño, bioerosion and the survival of east Pacific reefs. In: Proceedings of 6th International Coral Reef Symposium, vol 2, Townsville, pp 517–520

    Google Scholar 

  • Shirley TC, Rützler K (2010) Effects of heat and salinity stress on the sponge Cliona celata. Int J Biol 2:3–16

    Google Scholar 

  • Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res 112. doi:10.1029/2006JC003770

  • Sonnenholzner JI, Ladah LB, Lafferty KD (2009) Cascading effects of fishing on Galapagos rocky reef communities: reanalysis using corrected data. Mar Ecol Prog Ser 375:209–218

    Article  Google Scholar 

  • Sonnenholzner JI, Lafferty KD, Ladah LB (2011) Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos. Ecology 92:2276–2284

    Article  Google Scholar 

  • Spencer T (1992) Bioerosion and biogeomorphology. In: John DM, Hawkins SJ, Price JH (eds) Plant-animal interactions in the marine benthos. Clarendon Press, Oxford, pp 493–509

    Google Scholar 

  • Stearn CW, Scoffin TP, Martindale W (1977) Calcium carbonate budget of a fringing reef on the west coast of Barbados Part I—Zonation and productivity. Bull Mar Sci 27:479–510

    Google Scholar 

  • Tomlinson JT (1969) The burrowing barnacles (Cirripedia: order Acrothoracica). Bull US Natl Mus 296:1–162

    Article  Google Scholar 

  • Toro-Farmer GA (1998) Estimación de la intensidad bioerosionadora de los erizos (Echinodermata) en un arrecife coralino de la isla Gorgona-Pacífico colombiano. BSc thesis, Fac Cien, Univ Valle, Cali, Colombia

    Google Scholar 

  • Toro-Farmer G, Cantera JR, Londoño-Cruz E, Orozco C, Neira R (2004) Patrones de distribución y tasas de bioerosión del erizo Centrostephanus coronatus (Diadematoida: Diadematidae), en el arrecife de Playa Blanca, Pacífico colombiano. Rev Biol Trop 52:67–76

    Article  Google Scholar 

  • Toth LT, Aronson RB, Vollmer SV, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, van Woesik R, Macintyre IG (2012) ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337:81–84

    Article  CAS  Google Scholar 

  • Tribollet A (2008) Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia). Microbial Ecol 55(4):569–580

    Article  Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24(3):422–434

    Article  Google Scholar 

  • Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. In: Dubinsky Z, Stambler N (eds) Coral Reefs: an ecosystem in transition. Springer, Berlin, pp 435–449

    Chapter  Google Scholar 

  • Tribollet A, Decherf G, Hutchings P, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21(4):424–432

    Google Scholar 

  • Tribollet A, Godinot C, Atkinson, M Langdon C (2009) Effects of elevated PCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cy 23 GB3008. doi:10.1029/2008GB003286

  • Tribollet A, Radtke G, Golubic S (2011) Bioerosion. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Berlin, pp 117–134

    Chapter  Google Scholar 

  • Tudhope AW, Risk MJ (1985) Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. J Sediment Res 55(3):440–447

    Google Scholar 

  • Tunnicliffe V (1979) The role of boring sponges in coral fracture. In: Lévi C, Boury-Esnault N (eds) Biologie des spongiaires, vol 291. Coll Int CNRS, Paris, pp 309–315

    Google Scholar 

  • Warme JE (1975) Borings as trace fossils, and the processes of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, Berlin, pp 181–227

    Chapter  Google Scholar 

  • Wellington GM, Glynn PW (2007) Responses of coral reefs to El Niño-Southern Oscillation sea-warming events. In: Aronson RB (ed) Geological approaches to coral reef ecology. Ecological studies 192. Springer, New York, pp 342–385

    Google Scholar 

  • Williams JA, Margolis SV (1974) Sipunculid burrows in coral reefs: evidence for chemical and mechanical excavation. Pac Sci 28(4):357–359

    Google Scholar 

  • Williams AB, Ngoc-Ho N (1990) Pomatogebia, a new genus of thalassinidean shrimps from western hemisphere tropics (Crustacea: Upogebiidae). P Biol Soc Wash 103(3):614–616

    Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7(9):e45124

    Article  CAS  Google Scholar 

  • Wisshak M, Schönberg CH, Form AU, Freiwald A (2013) Effects of ocean acidification and global warming on reef bioerosion—Lessons from a clionaid sponge. Aquat Biol 19:111–127

    Article  Google Scholar 

  • Wulff JL (1997) Causes and consequences of differences in sponge diversity and abundance between the Caribbean and eastern Pacific of Panama. In: Proceedings of 8th International Coral Reef Symposium, vol 2, Panama, pp 1377–1382

    Google Scholar 

  • Yonge CM (1955) Adaptation to rock boring in Botula and Lithophaga (Lamellibranchia, Mytilidae) with a discussion on the evolution of this habit. Q J Microsc Sci 3(35):383–410

    Google Scholar 

  • Zapata FA, Morales YA (1997) Spatial and temporal patterns of fish diversity in a coral reef at Gorgona Island, Colombia. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 1029–1034

    Google Scholar 

  • Zea S (1993) Recruitment of demosponges (Porifera, Demospongiae) in rocky and coral reef habitats of Santa Marta, Colombian Caribbean. Mar Ecol 14(1):1–21

    Google Scholar 

  • Zubia M, Peyrot-Clausade M (2001) Internal bioerosion of Acropora formosa in Réunion (Indian Ocean): microborer and macroborer activities. Oceanol Acta 24(3):251–262

    Article  Google Scholar 

  • Zullo VA (1991) Zoogeography of the shallow-water cirriped fauna of the Galápagos Islands and adjacent regions in the tropical eastern Pacific. In: James MJ (ed) Galápagos Marine Invertebrates. Taxonomy, biogeography, and evolution in Darwin’s Islands. Plenum Press, New York, pp 173–192

    Google Scholar 

  • Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges—Lessons from Pione cf. vastifica. J Exp Biol 210:91–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.J. Alvarado acknowledges several sources for their financial support: Vicerectoría de Investigación, Universidad de Costa Rica, Ministerio de Ciencia y Tecnología de Costa Rica (MICIT), Consejo Nacional para Investigaciones Científicas y Tecnológicas de Costa Rica (CONICIT), Consejo Nacional de Ciencia y Tecnología de Mexico (CONACYT). J.L. Carballo acknowledges the CONACYT SEP for funding project 2008-102239. We are grateful for the comments offered by J. Cortés and two anonymous reviewers that improved this chapter. B. Grassian acknowledges P. Hutchings and K. Kleemann for providing comments that substantially improved the quality of this chapter, D. F. McNeill for preparation of specimens for photography, and M. Palacios and colleagues for their contribution of Fig. 12.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alvarado, J.J., Grassian, B., Cantera-Kintz, J.R., Carballo, J.L., Londoño-Cruz, E. (2017). Coral Reef Bioerosion in the Eastern Tropical Pacific. In: Glynn, P., Manzello, D., Enochs, I. (eds) Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7499-4_12

Download citation

Publish with us

Policies and ethics