Coral Reef Bioerosion in the Eastern Tropical Pacific

  • Juan José AlvaradoEmail author
  • Benjamin Grassian
  • Jaime Ricardo Cantera-Kintz
  • José Luis Carballo
  • Edgardo Londoño-Cruz
Part of the Coral Reefs of the World book series (CORW, volume 8)


Bioerosion, the weakening and erosion of hard substrates by boring, etching, and grazing organisms, is a major structuring force on coral reefs of the Eastern Tropical Pacific (ETP). Bioerosional processes are the main source of reef erosion, and facilitate recycling of reefal carbonate. In healthy reefs, a dynamic balance exists between destructive (i.e. bioerosion) and constructive (i.e. bioaccretion) processes, allowing for maintenance and growth of reef frameworks. In changing environments, however, bioerosion rates can exceed those of coral calcification, leading to reduced reef development and the destruction of reef frameworks. In the ETP, high rates of bioerosion are promoted by nutrient-rich upwelling and high primary productivity conditions, recurrent coral bleaching and mortality events, and a chemical environment characterized by high-pCO2 and low aragonite saturation state. Here we examine bioerosion in ETP coral habitats and the variable roles of reef-dwelling bioeroder taxa: microbial euendoliths (microendoliths), sponges, polychaetes, sipunculans, crustaceans, molluscs, echinoids, and reef fishes. Among these agents of bioerosion, sponges, sipunculans, bivalves, and echinoderms have been relatively well studied in this region, while information is currently lacking or limited for microendolith assemblages, polychaetes and reef fishes. The frequency of coral invasion by clionaid sponges (e.g., Cliona vermifera and Thoosa mismalolli) is variable between ETP coral habitats. Dense boring sponge assemblages can lead to high rates of carbonate losses exceeding those of bioaccretion. Boring bivalves (i.e., species of Lithophaga and Gastrochaena) are very abundant on many actively accreting reefs and are generally more prominent contributors to reef erosion in the ETP than in other regions. Sea urchins are by far the most destructive grazers of coral substrates in habitats where abundant. Following ENSO-associated coral mortality events, intense bioerosion by sea urchins has impeded coral recovery and compromised reef health at many eastern Pacific sites. This chapter reviews factors important in ETP bioerosion, and current knowledge of bioeroder populations in the region.


Carbonate degradation Echinoids Boring bivalves Bioeroder diversity Grazing and boring 



J.J. Alvarado acknowledges several sources for their financial support: Vicerectoría de Investigación, Universidad de Costa Rica, Ministerio de Ciencia y Tecnología de Costa Rica (MICIT), Consejo Nacional para Investigaciones Científicas y Tecnológicas de Costa Rica (CONICIT), Consejo Nacional de Ciencia y Tecnología de Mexico (CONACYT). J.L. Carballo acknowledges the CONACYT SEP for funding project 2008-102239. We are grateful for the comments offered by J. Cortés and two anonymous reviewers that improved this chapter. B. Grassian acknowledges P. Hutchings and K. Kleemann for providing comments that substantially improved the quality of this chapter, D. F. McNeill for preparation of specimens for photography, and M. Palacios and colleagues for their contribution of Fig. 12.7.


  1. Acker KL, Risk MJ (1985) Substrate destruction and sediment production by the boring sponge Cliona caribbaea on Grand Cayman Island. J Sed Petrol 56:705–711Google Scholar
  2. Alvarado JJ, Cortés J, Reyes-Bonilla H (2012) Reconstruction of Diadema mexicanum A. Agassiz, 1863 bioerosion impact on three Costa Rican Pacific coral reefs. Rev Biol Trop 60(Suppl 2):121–132Google Scholar
  3. Ansell AD, Nair NB (1969) The mechanisms of boring in Martesia striata Linné (Bivalvia: Pholadidae) and Xylophaga dorsalis Turton (Bivalvia: Xylophaginidae). Proc Royal Soc Lond Ser B Biol Sci 174(1034):123–133Google Scholar
  4. Appana SD, Vuki VC (2006) Bioerosion patterns and abundance and spatial distribution of Echinometra sp. A (green white tip) ecomorph on Nukubuco reef, Fiji. In: Proceedings of 10th International Coral Reef Symposium, Okinawa, pp 938–945Google Scholar
  5. Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:285–337CrossRefGoogle Scholar
  6. Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267–272CrossRefGoogle Scholar
  7. Bak RPM (1994) Sea urchin bioerosion on coral reefs: place in the carbonate budget and relevant variables. Coral Reefs 13:99–103CrossRefGoogle Scholar
  8. Bak RPM, van Eys G (1975) Predation of the sea urchin Diadema antillarum Philippi on living coral. Oecologia 20:111–115CrossRefGoogle Scholar
  9. Bak RPM, Carpay MJE, de Ruyter van Steveninck ED (1984) Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curaçao. Mar Ecol Prog Ser 17:105–108CrossRefGoogle Scholar
  10. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf S 80(4):435–471CrossRefGoogle Scholar
  11. Bautista-Guerrero E, Carballo JL, Maldonado M (2014) Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs? Coral Reefs 33(1):259–266CrossRefGoogle Scholar
  12. Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (Family Scaridae)—The ecological implications. Env Biol Fish 28:189–214CrossRefGoogle Scholar
  13. Benítez-Villalobos F, Domínguez-Gómez MT, López-Pérez RA (2008) Temporal variation of the sea urchin Diadema mexicanum population density at Bahías de Huatulco, Western Mexico. Rev Biol Trop 56(Suppl 3):255–263Google Scholar
  14. Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull 198:254–260CrossRefGoogle Scholar
  15. Birkeland C (1977) The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. In: Proceedings of 3rd International Coral Reef Symposium, vol 1, Miami, pp 15–21Google Scholar
  16. Birkeland C (1989) The influence of echinoderms on coral-reef communities. In: Jangoux M, Lawrence JM (eds) Echinoderm Studies 3. Balkema, Rotterdam, pp 1–79Google Scholar
  17. Blake JA (1991) The polychaete fauna of the Galápagos Islands. In: James MJ (ed) Galápagos marine invertebrates. Taxonomy, biogeography, and evolution in Darwin’s Islands. Plenum Press, New York, pp 75–96Google Scholar
  18. Brown-Saracino J, Peckol P, Curran HA, Robbart ML (2007) Spatial variation in sea urchins, fish predators, and bioerosion rates on coral reefs of Belize. Coral Reefs 26:71–78CrossRefGoogle Scholar
  19. Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71CrossRefGoogle Scholar
  20. Cailliaud F (1843) Notice sur le genre Gatrochène. Mag Zool 1843:1–10Google Scholar
  21. Cailliaud F (1850) Nouvelles obvservations au sujet de la perforation des pierres par les mollusques. J Conchol 1:363Google Scholar
  22. Calcinai B, Azzini F, Bavestrello G, Gaggero L, Cerrano C (2007) Excavating rates and boring pattern of Cliona albimarginata (Porifera: Clionaidae) in different substrata. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Museu Nacional, Rio de Janeiro, pp 203–207Google Scholar
  23. Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431CrossRefGoogle Scholar
  24. Cantera JR, Zapata F, Forero P, Francisco V, Jiménez JM, Londoño E, Narvaez K, Neira R, Orozco CA, Toro-Farmer G (2001) Organismos bioerosionadores en arrecifes de Isla Gorgona. In: Barrios LM, López-Victoria M (eds) Gorgona marina: contribución al conocimiento de una isla única, Serie Publicaciones Especiales 7. INVEMAR, Magdalena, pp 51–64Google Scholar
  25. Cantera JR, Orozco C, Londoño-Cruz E, Toro G (2003) Abundance and distribution patterns of infaunal associates and macroborers of the branched coral in Gorgona Island. Bull Mar Sci 72:207–219Google Scholar
  26. Carballo JL, Sánchez-Moyano JE, García Gómez JC (1994) Taxonomic and ecological remarks on boring sponges (Clionidae) from the Straits of Gibraltar (southern Spain): tentative bioindicators? Zool J Lin Soc 112:407–424CrossRefGoogle Scholar
  27. Carballo JL, Cruz-Barraza JA, Gómez P (2004) Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zool J Lin Soc 141:353–397CrossRefGoogle Scholar
  28. Carballo JL, Hepburn L, Nava H, Cruz-Barraza JA, Bautista-Guerrero E (2007) Coral boring Aka-species (Porifera: Phloeodictyidae) from Mexico with description of Aka cryptica sp. nov. J Mar Biol Assoc UK 87:1477–1484CrossRefGoogle Scholar
  29. Carballo JL, Bautista-Guerrero E, Leyte-Morales GE (2008) Boring sponges and the modelling of coral reefs in the East Pacific Ocean. Mar Ecol Prog Ser 356:113–122CrossRefGoogle Scholar
  30. Carballo JL, Cruz-Barraza JA, Nava H, Bautista E (2010a) Esponjas perforadoras de sustratos calcáreos: importancia en los ecosistemas arrecifales del Pacífico este. Rev Biol Trop 58:1591–1592Google Scholar
  31. Carballo JL, Bautista-Guerrero E, Nava H, Cruz Barraza JA (2010b) Cambio climático y ecosistemas costeros. Bases fundamentales para la conservación de los arrecifes de coral del Pacífico Este. In: Hernández-Zanuy AC, Alcolado PM (eds) La biodiversidad en ecosistemas marinos y costeros del litoral de Iberoamérica y el cambio climático: I. Red Cyted Biodivmar, Havana, pp 183–193Google Scholar
  32. Carballo JL, Bautista-Guerrero E, Nava H, Cruz-Barraza JA, Chávez JA (2013) Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol Evol 4:872–886CrossRefGoogle Scholar
  33. Carreiro-Silva M, McClanahan TR (2001) Echinoid bioerosion and hervibory on Kenyan coral reefs: the role of protection from fishing. J Exp Mar Biol Ecol 262:133–153CrossRefGoogle Scholar
  34. Carter JG (1978) Ecology and evolution of the Gastrochaenacea (Mollusca, Bivalvia) with notes on the evolution of the endolithic habitat. Peabod Mus Nat Hist Yale Univ Bull 41:48–51Google Scholar
  35. Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeogr Palaeocl 113(2):189–198CrossRefGoogle Scholar
  36. Colgan M (1990) El Niño and the history of Eastern Pacific reef building. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 183–232CrossRefGoogle Scholar
  37. Conand C, Chabanet P, Cuet P, Letourneur Y (1997) The carbonate budget of a fringing reef in La Réunion Island (Indian Ocean): sea urchin and fish bioerosion and net calcification. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 953–958Google Scholar
  38. Cortés J (1985) Preliminary observations of Alpheus simus Guérin-Méneville, 1856 (Crustacea: Alpheidae): a little-known Caribbean bioeroder. In: Proceedings of 5th International Coral Reef Congress, vol 5, Tahiti, pp 351–353Google Scholar
  39. Cortés J (1991) Los arrecifes coralinos del Golfo Dulce, Costa Rica: aspectos geológicos. Rev Geol Amer Central 13:15–24Google Scholar
  40. Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16(Suppl):S39–S46Google Scholar
  41. Cortés J, Jiménez C (2003) Corals and coral reefs of the Pacific of Costa Rica: history, research and status. In: Cortés J (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 361–385Google Scholar
  42. Cruz-Barraza JA, Carballo JL (2008) Taxonomy of sponges associated with corals from the Mexican Pacific Ocean. Zool Stud 47:741–758Google Scholar
  43. Cutler EB (ed) (1994) The Sipuncula: their systematics, biology, and evolution. Cornell University Press, Ithaca, p 453Google Scholar
  44. Cutler NJ, Cutler EB, Vargas JA (1992) Peanut worms (phylum Sipuncula) from Costa Rica. Gusanos maní (phylum Sipuncula) de Costa Rica. Rev Biol Trop 40:153–158Google Scholar
  45. Davies PJ, Hutchings PA (1983) Initial colonization, erosion and accretion on coral substrate: experimental results, Lizard Island, Great Barrier Reef. Coral Reefs 2:27–35CrossRefGoogle Scholar
  46. Dean HK, Sibaja-Cordero JA, Cortés J (2010) Sipunculans and echiurans of Isla del Coco (Cocos Island), Costa Rica. Zootaxa 2557:60–68Google Scholar
  47. DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y (2015) Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10CrossRefGoogle Scholar
  48. Deshayes GP (1850) Traité élémentaire de conchyliologie: avec les applications de cette science à la géologie. Tome premier. Seconde partie. V Mason, Paris, p 824Google Scholar
  49. Downing N, El-Zahr CR (1987) Gut evacuation and filling rates in the rock-boring sea urchin, Echinometra mathaei. Bull Mar Sci 41:579–584Google Scholar
  50. Duckworth AR, Peterson BJ (2013) Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Mar Biol 160:27–35CrossRefGoogle Scholar
  51. Eakin CM (1987) Damselfishes and their algal lawns: a case of plural mutualism. Symbiosis 4(1–3):275–288Google Scholar
  52. Eakin CM (1988) Avoidance of damselfish lawns by the sea urchin Diadema mexicanum at Uva Island, Panama. In: Proceedings of 6th International Coral Reef Symposium, vol 2, Townsville, pp 21–26Google Scholar
  53. Eakin CM (1991) The damselfish-algal lawn symbiosis and its influence on the bioerosion of an El Niño impacted coral reef, Uva Island, Pacific Panama. PhD Dissert, Univ Miami, Coral Gables, Florida, p 158Google Scholar
  54. Eakin CM (1992) Post-El Niño Panamanian reefs: less accretion, more erosion and damselfish protection. In: Proceedings of 7th International Coral Reef Symposium, vol 1, Guam, pp 387–396Google Scholar
  55. Eakin CM (1996) Where have all the carbonates gone? A model comparison of calcium carbonate budgets befote and after the 1982–1983 El Niño at Uva Island in the Eastern Pacific. Coral Reefs 15:109–119Google Scholar
  56. Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull Mar Sci 69:171–186Google Scholar
  57. Edgar GJ, Banks SA, Bessudo S, Cortés J, Guzman HM, Henderson S, Martinez C, Rivera F, Soler G, Ruiz D, Zapata FA (2011) Variation in reef fish and invertebrate communities with level of protection from fishing across the eastern tropical Pacific seascape. Glob Ecol Biogeogr 20(5):730–743Google Scholar
  58. Enochs IC (2012) Motile cryptofauna associated with live and dead coral substrates: implications for coral mortality and framework erosion. Mar Biol 159:709–722CrossRefGoogle Scholar
  59. Enochs IC, Manzello DP (2012) Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31:653–661CrossRefGoogle Scholar
  60. Fauchald K (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Nat Hist Mus LA County, Los Angeles, pp 1–188Google Scholar
  61. Fewkes W (1890) Sea-urchin excavations at Guaymas, Mexico. Am Nat 24:478–480Google Scholar
  62. Fonseca AC, Cortés J (1998) Coral borers of the eastern Pacific: Aspidosiphon (A.) elegans (Sipuncula: Aspidosiphonidae) and Pomatogebia rugosa (Crustacea: Upogebiidae). Pac Sci 52:170–175Google Scholar
  63. Fonseca AC, Dean HK, Cortés J (2006) Non-colonial coral macro-borers as indicators of coral reef status in the south Pacific of Costa Rica. Rev Biol Trop 54:101–115CrossRefGoogle Scholar
  64. Francisco V (2000) Determinación de las tasas de bioerosión por peces balístidos en un arrecife coralino del Pacífico colombiano. MSc Thesis, Universidad del Valle, Cali, Colombia, p 65Google Scholar
  65. Fütterer DK (1974) Significance of the boring sponge Cliona for the origin of fine grained material of carbonate sediments. J Sed Petrol 44:79–84Google Scholar
  66. Gilchrist S (1985) Hermit crab corallivore activity. In: Proceedings of 5th International Coral Reef Symposium, vol 5, Tahiti, pp 211–214Google Scholar
  67. Glynn PW (1973) Acanthaster: effect on coral reef growth in Panama. Science 180(4085):504–506CrossRefGoogle Scholar
  68. Glynn PW (1984) Widespread coral mortality and the 1982/83 El Niño warming event. Environ Conserv 11(2):133–146CrossRefGoogle Scholar
  69. Glynn PW (1985) Corallivore population sizes and feeding effects following El Niño (1982–1983) associated coral mortality in Panama. In: Proceedings of 5th International Coral Reef Symposium, vol 4, Tahiti, pp 183–188Google Scholar
  70. Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160Google Scholar
  71. Glynn PW (1990) Coral mortality and disturbances to coral reefs in the tropical eastern Pacific. In: Glynn PW (ed) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 55–126CrossRefGoogle Scholar
  72. Glynn PW (1994) State of coral reefs in the Galápagos Islands: natural vs anthropogenic impacts. Mar Pollut Bull 29(1):131–140CrossRefGoogle Scholar
  73. Glynn PW (1997) Bioerosion and coral-reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 68–95CrossRefGoogle Scholar
  74. Glynn PW (2004) High complexity food webs in low-diversity Eastern Pacific reef-coral communities. Ecosystems 7:358–367CrossRefGoogle Scholar
  75. Glynn PW (2008) Food-web structure and dynamics of eastern tropical Pacific coral reefs: Panamá and Galápagos Islands. In: McClanahan TR, Branch GM (eds) Food webs and the dynamics of marine reefs. Oxford University Press, Oxford, pp 185–208CrossRefGoogle Scholar
  76. Glynn PW, Macintyre IG (1977) Growth rate and age of coral reefs on the Pacific coast of Panama. In: Proceedings of 3rd International Coral Reef Symposium, vol 2, Miami, pp 251–259Google Scholar
  77. Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands (with an annotated list of the scleractinian corals of the Galápagos by JW Wells). Univ California Press, Berkeley, p 330Google Scholar
  78. Glynn PW, Stewart RH, McCosker JE (1972) Pacific coral reefs of Panama: structure, distribution and predators. Geol Rundsch 61(2):483–519CrossRefGoogle Scholar
  79. Glynn PW, Wellington GM, Birkeland C (1979) Coral reef growth in the Galápagos: limitation by sea urchins. Science 203:47–49CrossRefGoogle Scholar
  80. Glynn PW, Gassman NJ, Eakin CM, Cortés J, Smith DB, Guzman HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama and Galápagos Islands (Ecuador). I. Pocilloporidae. Mar Biol 109:355–368Google Scholar
  81. Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69(1):79–109Google Scholar
  82. Glynn PW, Riegl BM, Purkis S, Kerr J, Smith T (2015) Coral reef recovery in the Galápagos Islands: the northern-most islands (Darwin and Wenman). Coral Reefs 34(2):421–436CrossRefGoogle Scholar
  83. Goreau TF, Hartman WD (1963) Boring sponges as controlling factors in the formation and maintenance of coral reefs. Am Assoc Advan Sci Publ 75:25–54Google Scholar
  84. Griffin SP, García RP, Weil E (2003) Bioerosion in coral reef communities in southwest Puerto Rico by the sea urchin Echinometra viridis. Mar Biol 143:79–84CrossRefGoogle Scholar
  85. Gutner-Hoch E, Fine M (2011) Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs 30:643–650CrossRefGoogle Scholar
  86. Guzman HM (1986) Estructura de la comunidad arrecifal de la Isla del Caño, Costa Rica, y el efecto de perturbaciones naturales severas. MS thesis, Universidad de Costa Rica, San José, Costa Rica, p 179Google Scholar
  87. Guzman HM (1988) Distribución y abundancia de organismos coralívoros en los arrecifes coralinos de la Isla del Caño, Costa Rica. Rev Biol Trop 36(2):191–207Google Scholar
  88. Guzman HM (1991) Restoration of coral reefs in Pacific Costa Rica. Conser Biol 5:189–195 Google Scholar
  89. Guzman HM, Cortés J (1992) Isla del Coco (Pacific of Costa Rica) coral reefs after the 1982–83 El Niño disturbance. Rev Biol Trop 40:309–324Google Scholar
  90. Guzman HM, Cortés J (1993) Arrecifes coralinos del Pacífico Oriental Tropical: revisión y perspectivas. Rev Biol Trop 41:535–557Google Scholar
  91. Guzman HM, Cortés J (2007) Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar Biol 151:401–411Google Scholar
  92. Guzman HM, López JV (1991) Diet of the corallivorous pufferfish Arothron meleagris (Pisces: Tetraodontidae) at Gorgona Island, Colombia. Rev Biol Trop 39:203–206Google Scholar
  93. Guzman HM, Robertson DR (1989) Population and feeding responses of the corallivorous pufferfish Arothron meleagris to coral mortality in the Eastern Pacific. Mar Ecol Prog Ser 55:121–131Google Scholar
  94. Haigler SM (1969) Boring mechanism of Polydora websteri inhabiting Crassostrea virginica. Am Zool 9:821–828CrossRefGoogle Scholar
  95. Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclimat Palaeoecol 62:275–291CrossRefGoogle Scholar
  96. Hassan M (1988) Modification of carbonate substrata by bioerosion and bioaccretion on coral reefs of the Red Sea. Shaker Verlag, Aachen, p 124Google Scholar
  97. Hein FJ, Risk MJ (1975) Bioerosion of coral heads: inner patch reefs, Florida Reef Tract. Bull Mar Sci 25:133–138Google Scholar
  98. Herrera-Escalante T, López-Pérez RA, Leyte-Morales GE (2005) Bioerosion caused by the sea urchin Diadema mexicanum (Echinodermata: Echinoidea) at Bahías de Huatulco, Western Mexico. Rev Biol Trop 53(Suppl 3):263–273Google Scholar
  99. Hibino K, Van Woesik R (2000) Spatial differences and seasonal changes of net carbonate accumulation on some coral reefs of the Ryukyu Islands, Japan. J Exp Mar Biol Ecol 252:1–14CrossRefGoogle Scholar
  100. Highsmith RC (1980) Geographic patterns of coral bioerosion: a productivity hypothesis. J Exp Mar Biol Ecol 46:177–196CrossRefGoogle Scholar
  101. Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226CrossRefGoogle Scholar
  102. Highsmith RC, Lueptow RL, Schonberg SC (1983) Growth and bioerosion of three massive corals on the Belize barrier reef. Mar Ecol Prog Ser 13(2–3):261–271CrossRefGoogle Scholar
  103. Hunter IG (1977) Sediment production by Diadema antillarum on a Barbados fringing reef. In: Proceedings of 3th International Coral Reef Symposium, vol 2, Miami, pp 105–109Google Scholar
  104. Hueerkamp C, Glynn PW, D'Croz L, Maté JL, Colley SB (2001) Bleaching and recovery of five eastern Pacific corals in an El Niño-related temperature experiment. B Mar Sci 69(1):215–236.Google Scholar
  105. Hutchings PA (1981) Polychaete recruitment on to dead coral substrates at Lizard Island, Great Barrier Reef, Australia. Bull Mar Sci 31:410–423Google Scholar
  106. Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252CrossRefGoogle Scholar
  107. Hutchings PA (2008) Role of polychaetes in bioerosion of coral substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 249–264CrossRefGoogle Scholar
  108. Hutchings PA (2011) Bioerosion. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form, and process. Springer, Berlin, pp 139–156CrossRefGoogle Scholar
  109. Hutchings PA, Peyrot-Clausade M (1989) Macro-boring communities of Porites. A biological comparison. In: Proceedings of 6th International Coral Reef Symposium, vol 3, Townsville, pp 263–268Google Scholar
  110. Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Biol Ecol 269(1):101–121CrossRefGoogle Scholar
  111. Hutchings PA, Kiene WE, Cummingham RB, Donnelly C (1992) Spatial and temporal patterns of non-colonial boring organisms: (polychaetes, sipunculans and bivalve molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11:23–31CrossRefGoogle Scholar
  112. Hutchings PA, Peyrot-Clausade M, Osorno A (2005) Influence of land runoff on rates and agents of bioerosion of coral substrates. Mar Poll Bull 51:438–447CrossRefGoogle Scholar
  113. Jaccarini V, Bannister WH, Micallef H (1968) The pallial glands and rock boring in Lithophaga lithophaga (Lamellibranchia, Mytilidae). J Zool 154(4):397–401CrossRefGoogle Scholar
  114. Jiménez C (1996–1997) Coral colony fragmentation by whitetip reef sharks at Coiba Island National Park, Panamá. Rev Biol Trop 45(1B):698–700Google Scholar
  115. Jiménez JM (1999) Scarus ghobban (Pisces: Scaridae) en Isla Gorgona (Pacífico Oriental Tropical): abundancia, comportamiento alimenticio y papel en la bioerosión de arrecifes. BSc thesis, Univ del Valle, Cali, Colombia, p 74Google Scholar
  116. Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98CrossRefGoogle Scholar
  117. Kinsey DW (1985) Metabolism, calcification and carbon production. I. Systems level studies. In: Proceedings of 5th International Coral Reef Congress, vol 4, Tahiti, pp 505–526Google Scholar
  118. Kleemann K (1973) Lithophaga lithophaga (L.) (Bivalvia) in different limestones. Malacologia 14:345–347Google Scholar
  119. Kleemann K (1974) Beitrag zur Kenntnis des Verhaltens von Lithophaga lithophaga (L.) (Bivalvia) im Bohrloch. Sitzubgsberichte Österr Akad Wiss (math-naturw Kl, Abt. I) 182:201–210Google Scholar
  120. Kleemann KH (1977) A new species of Lithophaga (Bivalvia) from the Great Barrier Reef, Australia. Veliger 20(2):151–154Google Scholar
  121. Kleemann KH (1980) Boring bivalves and their host corals from the Great Barrier Reef. J Moll Stud 46:13–54Google Scholar
  122. Kleemann KH (1982) Ätzmuscheln im Ghetto? Lithophaga (Bivalvia) aus dem Leithakalk (Mittel-Miozän: Badenian) von Müllendorf im Wiener Becken, Österreich. Beitr Paläonto Österr 9:211–231Google Scholar
  123. Kleemann K (1986) Lithophagines (Bivalvia) from the Caribbean and the Eastern Pacific. In: Proceedings of 8th International Coral Reef Congress, Budapest, pp 113–118Google Scholar
  124. Kleemann K (1990) Boring and growth in chemically boring bivalves from the Caribbean, Eastern Pacific and Australia’s Great Barrier Reef. Senck Marit 21:101–154Google Scholar
  125. Kleemann K (1992) Coral communities and coral-bivalve associations in the northern Red Sea at Safaga, Egypt. Facies 26:1–10CrossRefGoogle Scholar
  126. Kleemann K (1995) Associations of coral and boring bivalves: Lizard Island (Great Barrier Reef, Australia) versus Safaga (N Red Sea). Beitr Paläont 20:31–39Google Scholar
  127. Kleemann K (1996) Biocorrosion by bivalves. PSZNI Mar Ecol 17(1–3):145–158CrossRefGoogle Scholar
  128. Kleemann K (2008) Lithophaga (Leiosolenus) purpurea (Bivalvia: Mytilidae): one species becomes three. Club Conchylia Informationen 39(3/4):32–45Google Scholar
  129. Kleemann K (2013) Fast and massive settlement of boring bivalves on coral slabs at Taboga Islands, Eastern Pacific, Panama. Boll Malacol 49:104–113Google Scholar
  130. Kleemann K, Hoeksema BW (2002) Lithophaga (Bivalvia, Mytilidae), including a new species, boring into mushroom corals (Scleractinia, Fungiidae) off South Sulawesi, Indonesia. Basteria 66:11–24Google Scholar
  131. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine C, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and USGS, p 88Google Scholar
  132. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434CrossRefGoogle Scholar
  133. Lazar B, Loya Y (1991) Bioerosion of coral reefs—A chemical approach. Limnol Oceanogr 36:377–383CrossRefGoogle Scholar
  134. Le Campion-Alsumard T, Golubic S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157CrossRefGoogle Scholar
  135. Londoño-Cruz E (2001) Proceso de bioerosión por organismos perforadores en un ecosistema arrecifal del Pacífico Oriental Tropical (Isla Gorgona, Colombia). MSc Thesis, Universidad del Valle, Cali, Colombia, p 56Google Scholar
  136. Londoño-Cruz E, Cantera JR, Toro-Farmer G, Orozco C (2003) Internal bioerosion by macroborers in Pocillopora spp. in the Tropical Eastern Pacific. Mar Ecol Prog Ser 265:289–295Google Scholar
  137. MacGeachy JK (1977) Factors controlling sponge boring in Barbados reef corals. In: Proceedings of 3rd International Coral Reef Symposium, vol 2, Miami, pp 477–483Google Scholar
  138. Manzello DP (2010a) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758CrossRefGoogle Scholar
  139. Manzello DP (2010b) Ocean acidification hotspots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanogr 55:239–248CrossRefGoogle Scholar
  140. Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci USA 105(30):10450–10455Google Scholar
  141. McClanahan TR, Muthiga NA (1988) Changes in Kenyan coral reef community structure and function due to exploitation. Hydrobiologia 166:269–276CrossRefGoogle Scholar
  142. McClanahan TR, Nugues M, Mwachireya S (1994) Assaying fish and sea urchin herbivory and competition in Kenyan coral reef lagoons. J Exp Mar Biol Ecol 184:237–254CrossRefGoogle Scholar
  143. Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107(2):308–341Google Scholar
  144. Mokady O, Lazar B, Loya Y (1996) Echinoid bioerosion as a major structuring force of Red Sea coral reefs. Biol Bull 190:367–372CrossRefGoogle Scholar
  145. Moreno XG, Abitia LA, Favila A, Gutiérrez FJ, Palacios DS (2009) Ecología trófica del pez Arothron meleagris (Tetraodontiformes: Tetraodontidae) en el arrecife de Los Frailes, Baja California Sur, México. Rev Biol Trop 57:113–123Google Scholar
  146. Morton B (1990) Corals and their bivalve borers: the evolution of a symbiosis. In: Morton B (ed) The Bivalvia: proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge (1899–1986) at the 9th international malacological congress, 1986, Edinburgh, Scotland, UK. Hong Kong University Press, Hong Kong, pp 11–46Google Scholar
  147. Morton B, Scott PJB (1980) Morphological and functional specializations of the shell, musculature and pallial glands in the Lithophaginae (Mollusca: Bivalvia). J Zool 192(2):179–203CrossRefGoogle Scholar
  148. Mumby PJ, Hedley JD, Zychaluk K, Harborne AR, Blackwell PG (2006) Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol Mod 196:131–148CrossRefGoogle Scholar
  149. Muricy G (1991) Structure des peuplements de spongiaires autour de l’égout de Cortiou (Marseille, France). Vie Milieu 41(4):205–221Google Scholar
  150. Nava H, Carballo JL (2008) Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J Exp Biol 211(17):2827–2831CrossRefGoogle Scholar
  151. Nava H, Carballo JL (2013) Environmental factors shaping boring sponge assemblages at Mexican Pacific coral reefs. Mar Ecol 34(3):269–279CrossRefGoogle Scholar
  152. Neudecker S (1979) Effects of grazing and browsing fishes on the zonation of corals in Guam. Ecology 60(4):666–672CrossRefGoogle Scholar
  153. Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108CrossRefGoogle Scholar
  154. Ogden JC (1977) Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates-ecology and sedimentology. Am Assoc Petrol Geol Stud Geol 4:281–288Google Scholar
  155. Okey TA, Banks S, Born AF, Bustamante RH, Calvopiña M, Edgar GJ, Espinoza E, Fariña JM, Garske LE, Reck GK, Salazar S (2004) A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol Model 172(2):383–401Google Scholar
  156. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686Google Scholar
  157. Osorno A, Peyrot-Clausade M, Hutchings PA (2005) Patterns and rates of erosion in dead Porites across the Great Barrier Reef (Australia) after 2 years and 4 years of exposure. Coral Reefs 24(2):292–303CrossRefGoogle Scholar
  158. Ovalle H (2011) Cuantificación de la erosión por esponjas perforadoras en comunidades arrecifales del Pacífico Mexicano. Licentiate thesis, Facultad de Ciencias del Mar, Univ Autónoma de Sinaloa, Sinaloa, MexicoGoogle Scholar
  159. Pacheco-Solano C (2011) Estudio taxonómico de las esponjas perforadoras (Porifera, Demospongiae) de arrecifes de coral del Pacífico de Costa Rica. Licentiate thesis, Escuela de Biología, Univ de Costa Rica, San José, Costa RicaGoogle Scholar
  160. Palacios MM, Muñoz CG, Zapata FA (2014) Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33:625–636CrossRefGoogle Scholar
  161. Pari N, Peyrot-Clausade M, LeCampion-Alsumard T, Hutchings P, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119–130CrossRefGoogle Scholar
  162. Perry CT (1998) Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17(2):277–287CrossRefGoogle Scholar
  163. Perry CT, Spencer T, Kench PS (2008) Carbonate budgets and reef production states: a geomorphic perspective on the ecological phase-shift concept. Coral Reefs 27:853–866CrossRefGoogle Scholar
  164. Peyrot-Clausade M, Chabanet P, Conand C, Fontaine MF, Letourner Y, Harmelin-Vivien H (2000) Sea urchin and fish bioerosion on La Réunion and Moorea reefs. Bull Mar Sci 66:477–485Google Scholar
  165. Pojeta J Jr, Palmer TJ (1976) The origin of rock boring in mytilacean pelecypods. Alcheringa 1(2):167–179CrossRefGoogle Scholar
  166. Pomponi SA (1977) Etching cells of boring sponges: an ultrastructural analysis. In: Proceedings of 3th International Coral Reef Symposium, vol 2, Miami, pp 485–490Google Scholar
  167. Reaka-Kudla ML, Feingold JS, Glynn PW (1996) Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands. Coral Reefs 15:101–107CrossRefGoogle Scholar
  168. Reyes-Bonilla H (2003) Coral reefs of the Pacific coast of Mexico. In: Cortés J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 331–349CrossRefGoogle Scholar
  169. Reyes-Bonilla H, Calderón-Aguilera LE (1999) Population density, distribution and consumption rates of three corallivores at Cabo Pulmo reef, Gulf of California. PZNSI Mar Ecol 20:347–357CrossRefGoogle Scholar
  170. Rice ME (1969) Possible boring structures of sipunculids. Am Zool 9(3):803–812CrossRefGoogle Scholar
  171. Rice ME, Macintyre IG (1972) A preliminary study of sipunculan burrows in rock thin sections. Carib J Sci 12(1–2):41–43Google Scholar
  172. Richmond RH (1985) Variations in the population biology of Pocillopora damicornis across the Pacific. In: Proceedings of 5th International Coral Reef Congress, vol 6, Tahiti, pp 101–106Google Scholar
  173. Richmond RH (1987) Energetic relationships and biogeographical differences among fecundity, growth, and reproduction in the reef coral, Pocillopora damicornis. Bull Mar Sci 41:595–604Google Scholar
  174. Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91CrossRefGoogle Scholar
  175. Ruengsawang N, Yeemin T (2000) Bioerosion caused by grazing activities on coral communities in the Gulf of Thailand. In: Proceedings of 9th International Coral Reef Symposium, vol 1, Bali, pp 289–294Google Scholar
  176. Russo AR (1980) Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands. J Mar Res 38:99–110Google Scholar
  177. Ruttenberg BI (2001) Effects of artisanal fishing on marine communities in the Galapagos Islands. Conserv Biol 15(6):1691–1699Google Scholar
  178. Rützler K (1971) Bredin-Archbold-Smithsonian Biological Survey of Dominica: burrowing sponges, genus Siphonodictyon Bergquist, from the Caribbean. Smith Contr Zool 77:1–37CrossRefGoogle Scholar
  179. Rützler K (1975) The role of burrowing sponges in bioerosion. Oecologia 19:203–216CrossRefGoogle Scholar
  180. Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72Google Scholar
  181. Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162CrossRefGoogle Scholar
  182. Sammarco PW (1980) Diadema and its relationship to coral spat mortality: grazing, competition and biological disturbance. J Exp Mar Biol Ecol 45:245–472CrossRefGoogle Scholar
  183. Sammarco PW (1982a) Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J Exp Mar Biol Ecol 61:31–55CrossRefGoogle Scholar
  184. Sammarco PW (1982b) Effects of grazing by Diadema antillarum Phillipi (Echinodermata: Echinoidea) on algal diversity and community structure. J Exp Mar Biol Ecol 65:83–105CrossRefGoogle Scholar
  185. Sammarco PW, Levington JS, Ogden JC (1974) Grazing and control of coral reef community structure by Diadema antillarum Phillipi (Echinodermata: Echinoidea): a preliminary study. J Mar Res 32:47–53Google Scholar
  186. Schoënberg CH (2002) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. Mar Ecol 23(4):313–326Google Scholar
  187. Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202CrossRefGoogle Scholar
  188. Schönberg CHL, Ortiz JC (2009) Is sponge bioerosion increasing? In: Proceedings of 11th International Coral Reef Symposium, Ft. Lauderdale, pp 520–523Google Scholar
  189. Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter JG, MacGeachy JK (1980) Calcium carbonate budget of fringing reef of the west coast of Barbados. Part II. Erosion, sediments and internal structure. Bull Mar Sci 30:475–508Google Scholar
  190. Scott PJB, Risk MJ (1988) The effects of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151CrossRefGoogle Scholar
  191. Scott PJB, Risk MJ, Carriquiry JD (1988) El Niño, bioerosion and the survival of east Pacific reefs. In: Proceedings of 6th International Coral Reef Symposium, vol 2, Townsville, pp 517–520Google Scholar
  192. Shirley TC, Rützler K (2010) Effects of heat and salinity stress on the sponge Cliona celata. Int J Biol 2:3–16Google Scholar
  193. Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res 112. doi: 10.1029/2006JC003770
  194. Sonnenholzner JI, Ladah LB, Lafferty KD (2009) Cascading effects of fishing on Galapagos rocky reef communities: reanalysis using corrected data. Mar Ecol Prog Ser 375:209–218CrossRefGoogle Scholar
  195. Sonnenholzner JI, Lafferty KD, Ladah LB (2011) Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos. Ecology 92:2276–2284CrossRefGoogle Scholar
  196. Spencer T (1992) Bioerosion and biogeomorphology. In: John DM, Hawkins SJ, Price JH (eds) Plant-animal interactions in the marine benthos. Clarendon Press, Oxford, pp 493–509Google Scholar
  197. Stearn CW, Scoffin TP, Martindale W (1977) Calcium carbonate budget of a fringing reef on the west coast of Barbados Part I—Zonation and productivity. Bull Mar Sci 27:479–510Google Scholar
  198. Tomlinson JT (1969) The burrowing barnacles (Cirripedia: order Acrothoracica). Bull US Natl Mus 296:1–162CrossRefGoogle Scholar
  199. Toro-Farmer GA (1998) Estimación de la intensidad bioerosionadora de los erizos (Echinodermata) en un arrecife coralino de la isla Gorgona-Pacífico colombiano. BSc thesis, Fac Cien, Univ Valle, Cali, ColombiaGoogle Scholar
  200. Toro-Farmer G, Cantera JR, Londoño-Cruz E, Orozco C, Neira R (2004) Patrones de distribución y tasas de bioerosión del erizo Centrostephanus coronatus (Diadematoida: Diadematidae), en el arrecife de Playa Blanca, Pacífico colombiano. Rev Biol Trop 52:67–76CrossRefGoogle Scholar
  201. Toth LT, Aronson RB, Vollmer SV, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, van Woesik R, Macintyre IG (2012) ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337:81–84CrossRefGoogle Scholar
  202. Tribollet A (2008) Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia). Microbial Ecol 55(4):569–580CrossRefGoogle Scholar
  203. Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24(3):422–434CrossRefGoogle Scholar
  204. Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. In: Dubinsky Z, Stambler N (eds) Coral Reefs: an ecosystem in transition. Springer, Berlin, pp 435–449CrossRefGoogle Scholar
  205. Tribollet A, Decherf G, Hutchings P, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21(4):424–432Google Scholar
  206. Tribollet A, Godinot C, Atkinson, M Langdon C (2009) Effects of elevated PCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cy 23 GB3008. doi: 10.1029/2008GB003286
  207. Tribollet A, Radtke G, Golubic S (2011) Bioerosion. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Berlin, pp 117–134CrossRefGoogle Scholar
  208. Tudhope AW, Risk MJ (1985) Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. J Sediment Res 55(3):440–447Google Scholar
  209. Tunnicliffe V (1979) The role of boring sponges in coral fracture. In: Lévi C, Boury-Esnault N (eds) Biologie des spongiaires, vol 291. Coll Int CNRS, Paris, pp 309–315Google Scholar
  210. Warme JE (1975) Borings as trace fossils, and the processes of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, Berlin, pp 181–227CrossRefGoogle Scholar
  211. Wellington GM, Glynn PW (2007) Responses of coral reefs to El Niño-Southern Oscillation sea-warming events. In: Aronson RB (ed) Geological approaches to coral reef ecology. Ecological studies 192. Springer, New York, pp 342–385Google Scholar
  212. Williams JA, Margolis SV (1974) Sipunculid burrows in coral reefs: evidence for chemical and mechanical excavation. Pac Sci 28(4):357–359Google Scholar
  213. Williams AB, Ngoc-Ho N (1990) Pomatogebia, a new genus of thalassinidean shrimps from western hemisphere tropics (Crustacea: Upogebiidae). P Biol Soc Wash 103(3):614–616Google Scholar
  214. Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean acidification accelerates reef bioerosion. PLoS ONE 7(9):e45124CrossRefGoogle Scholar
  215. Wisshak M, Schönberg CH, Form AU, Freiwald A (2013) Effects of ocean acidification and global warming on reef bioerosion—Lessons from a clionaid sponge. Aquat Biol 19:111–127CrossRefGoogle Scholar
  216. Wulff JL (1997) Causes and consequences of differences in sponge diversity and abundance between the Caribbean and eastern Pacific of Panama. In: Proceedings of 8th International Coral Reef Symposium, vol 2, Panama, pp 1377–1382Google Scholar
  217. Yonge CM (1955) Adaptation to rock boring in Botula and Lithophaga (Lamellibranchia, Mytilidae) with a discussion on the evolution of this habit. Q J Microsc Sci 3(35):383–410Google Scholar
  218. Zapata FA, Morales YA (1997) Spatial and temporal patterns of fish diversity in a coral reef at Gorgona Island, Colombia. In: Proceedings of 8th International Coral Reef Symposium, vol 1, Panama, pp 1029–1034Google Scholar
  219. Zea S (1993) Recruitment of demosponges (Porifera, Demospongiae) in rocky and coral reef habitats of Santa Marta, Colombian Caribbean. Mar Ecol 14(1):1–21Google Scholar
  220. Zubia M, Peyrot-Clausade M (2001) Internal bioerosion of Acropora formosa in Réunion (Indian Ocean): microborer and macroborer activities. Oceanol Acta 24(3):251–262CrossRefGoogle Scholar
  221. Zullo VA (1991) Zoogeography of the shallow-water cirriped fauna of the Galápagos Islands and adjacent regions in the tropical eastern Pacific. In: James MJ (ed) Galápagos Marine Invertebrates. Taxonomy, biogeography, and evolution in Darwin’s Islands. Plenum Press, New York, pp 173–192Google Scholar
  222. Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges—Lessons from Pione cf. vastifica. J Exp Biol 210:91–96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Juan José Alvarado
    • 1
    Email author
  • Benjamin Grassian
    • 2
    • 5
  • Jaime Ricardo Cantera-Kintz
    • 3
  • José Luis Carballo
    • 4
  • Edgardo Londoño-Cruz
    • 3
  1. 1.Centro de Investigación en Ciencias del Mar y Limnología, Escuela de BiologíaUniversidad de Costa RicaSan JoséCosta Rica
  2. 2.Rosenstiel School of Marine and Atmospheric Science, Marine Biology and EcologyUniversity of MiamiMiamiUSA
  3. 3.Departamento de BiologíaUniversidad del ValleCaliColombia
  4. 4.Instituto de Ciencias del Mar y Limnologia (estación Mazatlán)Universidad Nacional Autónoma de MexicoMazatlánMexico
  5. 5.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations