Acknowledging Long-Term Ecological Change: The Problem of Shifting Baselines

  • Emily S. KleinEmail author
  • Ruth H. Thurstan


Shifting baselines describes the phenomenon where long-term changes to an environment go unrecognized because what is perceived as natural shifts with succeeding generations of scientists and other observers. This is a particular problem for the oceans because we are rarely able to directly observe the consequences of human activities. In the absence of data to track these consequences, a common assumption has been that the communities we observe today using SCUBA or other technology, are similar to the communities that existed 10, 100, or even 1000 years ago. Research is increasingly demonstrating this is not the case. Instead, marine ecosystems may have been vastly different in the past, and we have succumbed to the shifting baselines syndrome. This has significant implications for scientific study, management, and for human communities more broadly. We discuss these implications, and how we might address the shifting baseline syndrome in the oceans to confront its repercussions. In a world where environmental degradation is accelerating, doing so is critical to avoid further ratcheting down of our expectations of ecosystem health and productivity, and to ensure that we have the information necessary to implement appropriate recovery and management goals.


Shifting baselines Intergenerational change Historical variability Retrospective data Social-ecological system 


  1. Alexander, K., Leavenworth, W. B., Cournane, J., Cooper, A. B., Claesson, S., Brennan, S., et al. (2009). Gulf of Maine cod in 1861: Historical analysis of fishery logbooks, with ecosystem implications. Fish and Fisheries, 10, 428–449.CrossRefGoogle Scholar
  2. Alexander, K., Leavenworth, W. B., Claesson, S., & Bolster, W. J. (2011). Catch density: A new approach to shifting baselines, stock assessment, and ecosystem-based management. Bulletin of Marine Science, 87(2), 213–234.CrossRefGoogle Scholar
  3. Alleway, H. K., & Connell, S. D. (2015). Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conservation Biology, 29, 795–804.CrossRefGoogle Scholar
  4. Aronson, R. B., Macintyre, I. G., Precht, W. F., Murdoch, T. J. T., & Wapnick, C. M. (2002). The expanding scale of species turnover events on coral reefs in Belize. Ecological Monographs, 72(2), 233–249.CrossRefGoogle Scholar
  5. Beaugrand, G., Reid, P., Ibanez, F., Lindley, J., & Edwards, M. (2002). Reorganisation of North Atlantic marine copepod biodiversity and climate. Science, 296, 1692–1694.CrossRefGoogle Scholar
  6. Berkes, F. (1985). Fishermen and ‘The Tragedy of the Commons’. Environmental Conservation, 12(3), 199–206.CrossRefGoogle Scholar
  7. Bolster, W. J. (2006). Opportunities in marine environmental history. Environmental History, 11(3), 567–597.CrossRefGoogle Scholar
  8. Bolster, W. J. (2008). Putting the ocean in Atlantic history: Maritime communities and marine ecology in the Northwest Atlantic, 1500–1800. American Historical Review, 113(1), 19–47.CrossRefGoogle Scholar
  9. Bolster, W. J. (2012). The mortal sea: Fishing the Atlantic in the Age of Sail. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  10. Bourque, B. J., Johnson, B. J., & Steneck, R. S. (2008). Possible prehistoric fishing effects on coastal marine food webs in the Gulf of Maine. In T. C. Rick & J. Erlandson (Eds.), Human impacts on ancient marine ecosystems (pp. 165–185). Berkeley: University of California Press.Google Scholar
  11. Campbell, L. M., Gray, N. J., Hazen, E. L., & Shackeroff, J. M. (2009). Beyond baselines: Rethinking priorities for ocean conservation. Ecology and Society, 14(1), 14. [online]
  12. Dayton, P. K., Tegner, M. J., Edwards, P. B., & Riser, K. L. (1998). Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecological Applications, 8(2), 309–322.CrossRefGoogle Scholar
  13. Dulvy, N. K., Davidson, L. N., & Kyne, P. M. (2016). Ghosts of the coast: Global extinction risk and conservation of sawfishes. Aquatic Conservation, 26(1), 134–153.CrossRefGoogle Scholar
  14. Engelhard, G. H., Thurstan, R. H., MacKenzie, B. R., Alleway, H. K., Bannister, R. C. A., Cardinale, M., Clarke, M. W., Currie, J. C., Fortibuoni, T., Holm, P., Holt, S. J., Mazzoldi,C., Pinnegar, J. K., Raicevich, S., Volckaert, F. A. M., Klein, E. S. K., & Lescrauwaet, A. K. (2015). ICES meets marine historical ecology: placing the history of fish and fisheries in current policy context. ICES Journal of Marine Science, 72(9). doi: 10.1093/icesjms/fsv219.
  15. FAO. (2014). The state of world fisheries and aquaculture: Opportunities and challenges. Rome: Food and Agriculture Organization of the United Nations.
  16. Feeny, D., Hanna, S., & McEvoy, A. F. (1996). Questioning the assumptions of the “Tragedy of the Commons” model of fisheries. Land Economics, 72(2), 187–205.CrossRefGoogle Scholar
  17. Fogarty, M. J. (2014). The art of ecosystem-based fishery management. Canadian Journal of Fisheries and Aquatic Sciences, 71(3), 479–490. doi: 10.1139/cjfas-2013-0203.CrossRefGoogle Scholar
  18. Fulton, E. A., Smith, A. D. M., Smith, D. C., & van Putten, I. E. (2011). Human behaviour: The key source of uncertainty in fisheries management. Fish and Fisheries, 12(1), 2–17. doi: 10.1111/j.1467-2979.2010.00371.x.CrossRefGoogle Scholar
  19. Grasso, G. M. (2008). What appeared limitless plenty: The rise and fall of the nineteenth-century Atlantic halibut fishery. Environmental History, 13(1), 66–91.CrossRefGoogle Scholar
  20. Hardin, G. (1968). The tragedy of the Commons. Science, 162(3859), 1243–1248.Google Scholar
  21. Hilborn, R. (2007). Reinterpreting the state of fisheries and their management. Ecosystems, 10(8), 1362–1369.CrossRefGoogle Scholar
  22. Hobday, A. J. (2011). Sliding baselines and shuffling species: Implications of climate change for marine conservation. Marine Ecology-An Evolutionary Perspective, 32(3), 392–403. doi: 10.1111/j.1439-0485.2011.00459.x.CrossRefGoogle Scholar
  23. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecological Systematics, 4, 1–23.CrossRefGoogle Scholar
  24. Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390–405. doi: 10.1007/s10021-001-0101-5.CrossRefGoogle Scholar
  25. Hollowed, A. B., Bax, N., Beamish, R., Collie, J., Fogarty, M., Livingston, P., Pope, J., & Rice, J. C. (2000). Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES Journal of Marine Science, 57(3), 707–719.CrossRefGoogle Scholar
  26. Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A., & van Nes, E. H. (2013). Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology and Evolution, 28(3), 149–155.CrossRefGoogle Scholar
  27. Huxley, T. H. (1883). Inaugural address: Fisheries exhibition. London.
  28. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629–638.CrossRefGoogle Scholar
  29. Jackson, J. B. C., Alexander, K., & Sala, E. (2011). Shifting baselines: The past and the future of ocean fisheries. Washington, DC: Island Press.CrossRefGoogle Scholar
  30. Judd, R. W. (1997). Common lands, common people. Cambridge, MA: Harvard University Press.Google Scholar
  31. Kittinger, J. N., Van Houten, K. S., McClenachan, L., et al. (2013). Using historical data to assess the biogeography of population recovery. Ecography, 36, 868–872.CrossRefGoogle Scholar
  32. Kittinger, J. N., Blight, L. K., Gedan, K. B., & McClenachan, L. E. (2015). Marine historical ecology in conservation: Applying the past to manage for the future. Oakland: University of California Press.Google Scholar
  33. Klein, E. S. (2013). Change in nonlinear dynamics and spatial structure of coastal socio-ecological systems: Bay of Fundy as case study. Dissertation, University of New Hampshire, Durham.Google Scholar
  34. Knowlton, N. (2004). Multiple “stable” states and the conservation of marine ecosystems. Progress in Oceanography, 60(2–4), 387–396.CrossRefGoogle Scholar
  35. Leavenworth, W. B. (2008). The changing landscape of maritime resources in seventeenth-century New England. International Journal of Maritime History, XX(1), 33–62.CrossRefGoogle Scholar
  36. Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., & Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806–1809.CrossRefGoogle Scholar
  37. Lozano-Montes, H. M., Pitcher, T. J., & Haggan, N. (2008). Shifting environmental and cognitive baselines in the upper Gulf of California. Frontiers in Ecology and the Environment, 6, 75–80.Google Scholar
  38. MacCall, A. (2011). The sardine-anchovy puzzle. In J. B. C. Jackson, K. Alexander, & E. Sala (Eds.), Shifting baselines: The past and future of ocean fisheries (pp. 47–76). Washington, DC: Island Press.CrossRefGoogle Scholar
  39. MacKenzie, B. R., & Mariani, P. (2012). Spawning of bluefin tuna in the Black Sea: Historical evidence, environmental constraints and population plasticity. PLoS ONE, 7(7), e39998. doi: 10.1371/journal.pone.0039998.CrossRefGoogle Scholar
  40. Marsh, H., De’Ath, G., Gribble, N., & Lane, B. (2005). Historical marine population estimates: Triggers or targets for conservation? The dugong case study. Ecological Applications, 15(2), 481–492.CrossRefGoogle Scholar
  41. McCann, K. S. (2000). The diversity-stability debate. Nature, 405(6783), 228–233.CrossRefGoogle Scholar
  42. McClenachan, L. (2009). Documenting loss of large trophy fish from the Florida Keys with historical photographs. Conservation Biology, 23, 636–643.CrossRefGoogle Scholar
  43. McClenachan, L. (2013). Recreation and the ‘Right to Fish’ movement: Anglers and ecological degradation in the Florida Keys. Environmental History, 18, 76–87.CrossRefGoogle Scholar
  44. Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423(6937), 280–283.CrossRefGoogle Scholar
  45. Orton, D. C., Makowiecki, D., de Roo, T., Johnstone, C., Harland, J., Jonsson, L., et al. (2011). Stable isotope evidence for Late Medieval (14th–15th C) origins of the Eastern Baltic Cod (Gadus morhua) fishery. PLoS ONE, 6(11), e27568. doi: 10.1371/journal.pone.0027568.CrossRefGoogle Scholar
  46. Pandolfi, J. M. (2002). Coral community dynamics at multiple scales. Coral Reefs, 21(1), 13–23. doi: 10.1007/s00338-001-0204-7.CrossRefGoogle Scholar
  47. Pandolfi, J. M., & Jackson, J. B. C. (2006). Ecological persistence interrupted in Caribbean coral reefs. Ecology Letters, 9(7), 818–826.CrossRefGoogle Scholar
  48. Pandolfi, J. M., & Jackson, J. B. C. (2007). Broad-scale patterns in Pleistocene Coral Reef communities from the Caribbean: Implications for ecology and management. In R. B. Aronson (Ed.), Geological approaches to Coral Reef Ecology (pp. 201–236). New York: Springer Publishers.Google Scholar
  49. Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., McArdle, D., et al. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science, 301(5635), 955–958.CrossRefGoogle Scholar
  50. Pauly, D. (1995). Anecdotes and the shifting base-line syndrome of fisheries. Trends in Ecology & Evolution, 10(10), 430–430.CrossRefGoogle Scholar
  51. Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems, 1(1), 6–18.CrossRefGoogle Scholar
  52. Pinnegar, J. K., & Engelhard, G. H. (2008). The ‘shifting baseline’ phenomenon: A global perspective. Review Fish Biology Fisheries, 18, 1–16.CrossRefGoogle Scholar
  53. Rick, T. C., & Erlandson, J. M. (2008). Human impacts on ancient marine ecosystems: A global perspective (336 p.). Oakland: University of California Press.Google Scholar
  54. Roberts, C. M. (2007). The unnatural history of the sea. Washington, DC: Island Press.Google Scholar
  55. Roman, J., Dunphy-Daly, M. M., Johnston, D. W., & Read, A. J. (2015). Lifting baselines to address the consequences of conservation success. Trends in Ecology and Evolution, 30(6), 299–302.CrossRefGoogle Scholar
  56. Rosenberg, A. A., Bolster, W. J., Alexander, K. E., Leavenworth, W. B., Cooper, A. B., & McKenzie, M. G. (2005). The history of ocean resources: Modeling cod biomass using historical records. Frontiers in Ecology and the Environment, 3(2), 84–90.CrossRefGoogle Scholar
  57. Rosenberg, A. A., Alexander, K., & Cournane, J. (2011). Management in the Gulf of Maine. In J. B. C. Jackson, K. Alexander, & E. Sala (Eds.), Shifting baselines: The past and future of oceans fisheries (pp. 177–191). Washington, DC: Island Press.CrossRefGoogle Scholar
  58. Sàenz-Arroyo, A., Roberts, C. M., Torre, J., et al. (2005). Rapidly shifting environmental baselines among fishers of the Gulf of California. Proceedings Royal Society B, 272, 1957–1962.CrossRefGoogle Scholar
  59. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596.CrossRefGoogle Scholar
  60. Schwerdtner Máñez, K., Holm, P., Blight, L., Coll, M., MacDiarmid, A., Ojaveer, H., Poulsen, B., & Tull, M. (2014). The future of the oceans past: Towards a global marine historical research initiative. Plos One, 9(7), e101466. doi: 10.1371/journal.pone.0101466.CrossRefGoogle Scholar
  61. Sheppard, C. (1995). The shifting baseline syndrome. Marine Pollution Bulletin, 30(12), 706–767.Google Scholar
  62. Smith, T. D., & Link, J. S. (2005). Autopsy your dead … living: A proposal for fisheries science, fisheries management and fisheries. Fish and Fisheries, 6(1), 73–87.CrossRefGoogle Scholar
  63. Steneck, R. S., & Carlton, J. T. (2001). Human alterations of marine communities: Students beware! In M. D. Bertness, S. D. Gaines, & M. E. Hay (Eds.), Marine community ecology (pp. 445–468). Sunderland: Sinauer Associates Inc.Google Scholar
  64. Sugihara, G. (2010). Nature is nonlinear. Kyoto Journal, 75, 56.Google Scholar
  65. Sutherland, J. P. (1974). Multiple stable points in natural communities. American Naturalist, 108(964), 859–873.CrossRefGoogle Scholar
  66. Thurstan, R. H., McClenachan, L., Crowder, L. B., et al. (2015). Filling historical data gaps to foster solutions in marine conservation. Ocean Coastal Management, 115, 31–40. doi: 10.1016/j.ocecoaman.2015.04.019.CrossRefGoogle Scholar
  67. Thurstan, R. H., Buckley, S. M., Ortiz, J. C., & Pandolfi, J. M. (2016a). Setting the record straight: Assessing the reliability of retrospective accounts of change. Conservation Letters, 9(2), 98–105. doi: 10.1111/conl.12184.
  68. Thurstan, R. H., Campbell, A. B., & Pandolfi, J. M. (2016b). 19th century narratives reveal historic catch rates for Australian snapper (Pagrus auratus). Fish and Fisheries, 17(1), 210–225. doi: 10.1111/faf.12103.
  69. Turvey, S. T., Risley, C. L., Moore, J. E., Barrett, L. A., et al. (2013). Can local ecological knowledge be used to assess status and extinction drivers in a threatened freshwater cetacean? Biological Conservation, 157, 352–360.CrossRefGoogle Scholar
  70. Vickers, D. (1994). Farmers and fishermen: Two centuries of work in Essex County, Massachusetts, 1630–1850. Chapel Hill: University of North Carolina Press for the Institute of Early American History and Culture.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Ecology & Evolutionary BiologyPrinceton UniversityPrincetonUSA
  2. 2.School of Life and Environmental SciencesDeakin UniversityWarrnamboolAustralia

Personalised recommendations