Cancer Genetics in the Clinic

  • Fred Bunz


The cancer gene theory has provided an intellectual framework for understanding how cancers arise and how they grow. We can now appreciate how somatic mutations promote the evolutionary growth of neoplasia, and how germline mutations can affect cancer risk. These insights rank among the great accomplishments of modern science. Most importantly, the cancer gene theory guides the most promising efforts to prevent, diagnose, treat and cure cancer.


Cancer Gene TP53 Mutation Primary Cilium Base Excision Repair Immune Checkpoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Futher Reading

  1. Amakye D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med 19:1410–1422CrossRefPubMedGoogle Scholar
  2. Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. JCO 26:3785–3790CrossRefGoogle Scholar
  3. Azam M, Latek RR, Daley GQ (2003) Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112:831–843CrossRefPubMedGoogle Scholar
  4. Bettegowda C et al (2014) Detection of circulating tumor DNA in early- and late-stage human Malignancies. Sci Transl Med 6:224ra24Google Scholar
  5. Bianchi DW et al (2015) Noninvasive prenatal testing and incidental detection of Occult Maternal Malignancies. JAMA 314:162–169CrossRefPubMedGoogle Scholar
  6. Chin L, Andersen JN, Futreal PA (2011) Cancer genomics: from discovery science to personalized medicine. Nat Med 17:297–303CrossRefPubMedGoogle Scholar
  7. Domchek SM, Weber BL (2006) Clinical management of BRCA1 and BRCA2 mutation carriers. Oncogene 25:5825–5831CrossRefPubMedGoogle Scholar
  8. Domchek S, Weber BL (2008) Genetic variants of uncertain significance: flies in the ointment. J Clin Oncol 26:16–17CrossRefPubMedGoogle Scholar
  9. Druker BJ (2002) Perspectives on the development of a molecularly targeted agent. Cancer Cell 1:31–36CrossRefPubMedGoogle Scholar
  10. Easton DF et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. NEJM 372:2243–2257CrossRefPubMedPubMedCentralGoogle Scholar
  11. Greulich H et al (2005) Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2:e313CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gross AM et al (2014) Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nat Genet 46:939–943CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guttmacher AE, Collins FS (2005) Realizing the promise of genomics in biomedical research. JAMA 294:1399–1402CrossRefPubMedGoogle Scholar
  14. Herbst RS, Fukuoka M, Baselga J (2004) Gefitinib-a novel targeted approach to treating cancer. Nat Rev Cancer 4:956–965CrossRefPubMedGoogle Scholar
  15. Hu YC, Sidransky D, Ahrendt SA (2002) Molecular detection approaches for smoking associated tumors. Oncogene 21:7289–7297CrossRefPubMedGoogle Scholar
  16. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354CrossRefPubMedGoogle Scholar
  17. Kelley SK, Ashkenazi A (2004) Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 4:333–339CrossRefPubMedGoogle Scholar
  18. Kinde I et al (2013) Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci Transl Med 167:167ra4Google Scholar
  19. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187CrossRefPubMedGoogle Scholar
  20. Lacroix M (2006) Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 13:1033–1067CrossRefPubMedGoogle Scholar
  21. Larsen AR et al (2015) Repurposing the antihelmintic mebendazole as a Hedgehog inhibitor. Mol Cancer Ther 14:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mao L et al (1994) Microsatellite alterations as clonal markers for the detection of human cancer. Proc Natl Acad Sci U S A 91:9871–9875CrossRefPubMedPubMedCentralGoogle Scholar
  23. Masica DL et al (2015) Predicting survival in head and neck squamous cell carcinoma from TP53 mutation. Hum Genet 134:497–507CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mills NE et al (1995) Detection of K-ras oncogene mutations in bronchoalveolar lavage fluid for lung cancer diagnosis. J Natl Cancer Inst 87:1056–1060CrossRefPubMedGoogle Scholar
  25. Morgensztern D, Govindan R (2007) Is there a role for cetuximab in non small cell lung cancer? Clin Cancer Res 13:4602s–4605sCrossRefGoogle Scholar
  26. Nahta R, Esteva FJ (2007) Trastuzumab: triumphs and tribulations. Oncogene 26:3637–3643CrossRefPubMedGoogle Scholar
  27. Ng JMY, Curran T (2011) The Hedgehog’s tale: developing strategies for targeting cancer. Nat Rev Cancer 11:493–501CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264CrossRefPubMedGoogle Scholar
  29. Petitjean A et al (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165CrossRefPubMedGoogle Scholar
  30. Polyak K, Garber J (2011) Targeting the missing links for cancer therapy. Nat Med 17:283–284CrossRefPubMedGoogle Scholar
  31. Schindler T et al (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942CrossRefPubMedGoogle Scholar
  32. Schwartz RS (2002) A needle in a haystack of genes. N Engl J Med 346:302–304CrossRefPubMedGoogle Scholar
  33. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181CrossRefPubMedGoogle Scholar
  34. Smith BD (2011) Imatinib for chronic myeloid leukemia: the impact of its effectiveness and long-term side effects. JNCI 103:2–4CrossRefGoogle Scholar
  35. Trepanier A et al (2004) Genetic cancer risk assessment and counseling: recommendations of the national society of genetic counselors. J Genet Couns 13:83–114CrossRefPubMedGoogle Scholar
  36. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633CrossRefPubMedGoogle Scholar
  37. Wexler NS (1992) The Tiresias complex: Huntington’s disease as a paradigm of testing for late-onset disorders. FASEB J 6:2820–2825PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2016

Authors and Affiliations

  • Fred Bunz
    • 1
  1. 1.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations