Skip to main content

Theoretical Analysis of Electron Transfer in Proteins: From Simple Proteins to Complex Machineries

  • Chapter
  • First Online:
Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

Summary

Electron transferplays a central role in many biological processes such as, for instance, photosynthesis or oxidative phosphorylation, but also in other bioenergetic processes such as denitrification or sulfate and sulfite reduction. Moreover, electron transfer is a key step in many enzymatic reactions. The framework of Marcus theory provides the theoretical basis to describe the kinetics of these reactions. The parameters to calculate rate constants can be estimated using protein crystal structures. Namely, the electronic coupling is related to the edge-to-edge distance between the redox-active sites. The reaction free energy and the reorganization energy can be obtained, for instance, from continuum electrostatic calculations. However, to perform complicated tasks, proteins often combine many redox cofactors and couple the redox reactions to protonation reactions or conformational changes. Moreover, electron transfer proteins are often embedded in membranes, and thus membrane potential and concentration gradients influence the reactions. One approach to describe such complex systems is the so-called microstate model, in which each state of a system is represented by a vector in which each component defines the status of each site (for instance oxidized or reduced, protonated or deprotonated). On the basis of this microstate description, it is possible to calculate the thermodynamics and kinetics of a complex protein system. In this article, we will review the principle features of the microstate model and explain how the parameters of the microstate model can be calculated using continuum electrostatics. The microstate model provides the theoretical framework to go from molecular structures to the mechanism of complex protein machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banerjee R (2008) Redox biochemistry. Wiley, Hoboken

    Google Scholar 

  • Bashford D, Karplus M (1990) pK as of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225

    Article  CAS  PubMed  Google Scholar 

  • Becker T, Ullmann RT, Ullmann GM (2007) Simulation of the electron transfer between the tetraheme-subunit and the special pair of the photosynthetic reaction center using a microstate description. J Phys Chem B 111:2957–2968

    Article  CAS  PubMed  Google Scholar 

  • Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center. Proc Natl Acad Sci USA 88:5804–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge DL, DiCapua FM (1989) Free energy via molecular simulation: applications to chemical and biomolecular systems. Ann Rev Biophys Biochem 18:431–492

    Article  CAS  Google Scholar 

  • Bombarda E, Ullmann GM (2011) Continuum electrostatic investigations of charge transfer processes in biological molecules using a microstate description. Faraday Discuss 148:173–193

    Article  CAS  PubMed  Google Scholar 

  • Bombarda E, Becker T, Ullmann GM (2006) The influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping. J Am Chem Soc 128:12129–12139

    Article  CAS  PubMed  Google Scholar 

  • Born M (1920) Volumen und Hydratationswärme der Ionen. Z Physik 1:45–48

    Article  CAS  Google Scholar 

  • Calimet N, Ullmann GM (2004) The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect. J Mol Biol 339:571–589

    Article  CAS  PubMed  Google Scholar 

  • Connolly M (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Knaff DB (1991) Energy transduction in biological membranes. Springer, New York

    Google Scholar 

  • Crofts AR, Rose S (2007) Marcus treatment of endergonic reactions: a commentary. Biochim Biophys Acta 1767:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts AR (2004) The cytochrome bc1 complex: function in the context of structure. Ann Rev Physiol 66:689–733

    Article  CAS  Google Scholar 

  • da Silva JF, Williams R (2001) The biological chemistry of the elements – the inorganic chemistry of life. Oxford University Press, New York

    Google Scholar 

  • Davidson VL (2007) Protein-derived cofactors. Expanding the scope of post-translational modifications. Biochemistry 46:5283–5292

    CAS  PubMed  Google Scholar 

  • Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Bashford D (2006) Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle. J Am Chem Soc 128:16778–16790

    Article  CAS  PubMed  Google Scholar 

  • Gamow G (1928) Zur Quantentheorie des Atomkernes. Z Physik 51:204–212

    Article  CAS  Google Scholar 

  • Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115:1716–1733

    Article  CAS  Google Scholar 

  • Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561

    Article  CAS  PubMed  Google Scholar 

  • Gray HB, Winkler JR (2005) Long-range electron transfer. Proc Natl Acad Sci USA 102:3534–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunner MR, Mao J, Song Y, Kim J (2006) Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. Biochim Biophys Acta 1757:942–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2008) Microbial fuel cells. Wiley, Hoboken

    Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  • Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    CAS  PubMed  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367

    Article  CAS  PubMed  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802

    Article  CAS  PubMed  Google Scholar 

  • Muegge I, Qi PX, Wand AJ, Chu ZT, Warshel A (1997) The reorganization energy of cytochrome c revisited. J Phys Chem B 101:825–836

    Article  CAS  Google Scholar 

  • Nicholls DG, Ferguson S (2013) Bioenergetics, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Nielsen JE, McCammon JA (2003) Calculating pKa values in enzyme active sites. Protein Sci 12:1894–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson MHM, Ryde U, Roos BO (1998) Quantum chemical calculation of the reorganization energy of blue copper proteins. Prot Sci 81:6554–6558

    Google Scholar 

  • Onufriev A, Case DA, Ullmann GM (2001) A novel view on the pH titration of biomolecules. Biochemistry 40:3413–3419

    Article  CAS  PubMed  Google Scholar 

  • Ortega JM, Mathis P (1993) Electron transfer from the tetraheme cytochrome to the special pair in isolated reaction centers of Rhodopseudomonas viridis. Biochemistry 32:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52

    Article  CAS  PubMed  Google Scholar 

  • Pedersen A, Karlsson GB, Rydström J (2008) Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J Bioenerg Biomemb 40:463–473

    Article  CAS  Google Scholar 

  • Roux B (1997) The influence of the membrane potential on the free energy of an intrinsic protein. Biophys J 73:2981–2989

    Article  Google Scholar 

  • Ryde U, Olsson MHM (2001) Structure, strain and reorganization energy of blue copper models in the protein. Int J Quant Chem 81:335–347

    Article  CAS  Google Scholar 

  • Sharp KE (1998) Calculation of electron transfer reorganization energies using the finite difference poisson-Boltzmann model. Biophys J 73:1241–1250

    Article  Google Scholar 

  • Stubbe J, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–776

    Article  CAS  PubMed  Google Scholar 

  • Stuchebrukhov A (2003) Long-distance electron tunneling in proteins. Theor Chem Acc 110: 314–344

    Article  Google Scholar 

  • Till MS, Becker T, Essigke T, Ullmann GM (2008) Simulating the proton transfer in Gramicidin A by a sequential dynamical Monte Carlo method. J Phys Chem B 112:13401–13410

    Article  CAS  PubMed  Google Scholar 

  • Ullmann GM, Bombarda E (2013) pK(a) values and redox potentials of proteins. What do they mean? Biol Chem 394:611–619

    Article  CAS  PubMed  Google Scholar 

  • Ullmann GM, Knapp EW (1999) Electrostatic computations of protonation and redox equilibria in proteins. Eur Biophys J 28:533–551

    Article  CAS  PubMed  Google Scholar 

  • Ullmann GM, Kostić NM (1995) Electron-tunneling paths in various electrostatic complexes between cytochrome c and plastocyanin. Anisotropy of the copper-ligand interactions and dependence of the iron-copper electronic coupling on the metalloprotein orientation. J Am Chem Soc 117: 4766–4774

    CAS  Google Scholar 

  • Ullmann RT, Ullmann GM (2012) GMCT: a Monte Carlo simulation package for macromolecular receptors. J Comput Chem 33:887–900

    Article  CAS  PubMed  Google Scholar 

  • Ullmann GM, Kloppmann E, Essigke T, Krammer EM, Klingen AR, Becker T, Bombarda E (2008) Investigating the mechanisms of photosynthetic proteins using continuum electrostatics. Photosynth Res 97:33–53

    Article  CAS  PubMed  Google Scholar 

  • Ullmann GM (2000) The coupling of protonation and reduction in proteins with multiple redox centers: theory, computational method, and application to cytochrome c 3. J Phys Chem B 104: 6293–6301

    Article  CAS  Google Scholar 

  • Ullmann GM (2003) Relations between protonation constants and titration curves in polyprotic acids: a critical view. J Phys Chem B 107:6293–6301

    Article  Google Scholar 

  • Warren JJ, Winkler JR, Gray HB (2012) Redox properties of tyrosine and related molecules. FEBS Lett 586:596–602

    Article  CAS  PubMed  Google Scholar 

  • Warwicker J, Watson HC (1982) Calculation of the electrostatic potential in the active site cleft due the α-helix dipols. J Mol Biol 186:671–679

    Article  Google Scholar 

  • Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388: 997–1006

    Article  CAS  PubMed  Google Scholar 

  • Wilson GS (1983) Electrochemical studies of porphyrin redox reactions as cytochrome models. Bioelectrochem Bioenerg 1:172–179

    Article  Google Scholar 

  • Woycechowsky K, Raines R (2000) Native disulfide bond formation in proteins. Curr Opin Chem Biol 4:533–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You T, Bashford D (1995) Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility. Biophys J 69:1721–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH (1998) Electron transfer by domain movement in cytochrome bc1. Nature 392:677–684

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Gunner MR (2009) Analysis of the electrochemistry of hemes with E(m)s spanning 800 mV. Proteins 75:719–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Wang H, Hassett DJ, Gu T (2013) Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Tech Biotech 88:508–518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supportedby the DFG RTG 1640 (Photophysics of Synthetic and Biological Multichromophoric Systems) and by the DFG Grant BO 3578/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Matthias Ullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ullmann, G.M., Mueller, L., Bombarda, E. (2016). Theoretical Analysis of Electron Transfer in Proteins: From Simple Proteins to Complex Machineries. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_6

Download citation

Publish with us

Policies and ethics