Skip to main content

Chemical Conversion of Biomass to Green Chemicals

  • Chapter
  • First Online:
Sustainable Production of Bulk Chemicals

Abstract

Biomass has the potential to serve as a sustainable source of energy and organic carbon for our industrial society. The focus of this chapter is to provide a survey of different strategies to achieve chemical catalytic conversion of biomass-derived oxygenated feedstocks to value-added chemicals and fuels. The key reactions involved in the processing of biomass are hydrolysis, dehydration, isomerization, aldol condensation, reforming, hydrogenation/hydrogenolysis, and oxidation. Here, a few specific examples, namely efficient hydrolysis of cellulose over novel solid acids and synthesis of polyols by hydrogenation/hydrogenolysis of cellulose and sugar have been chosen for this review. Further, the selective conversion of platform molecules, such as furan, HMF, and biogenic carboxylic acids into intermediates, specialties, and fine chemicals has been considered. While many challenges are involved in biomass processing, understanding of fundamental reaction chemistry for different types of reactions can lead to the development of new approaches for specific processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  2. Petrus L, Noordermeer MA (2006) Biomass to biofuels, a chemical perspective. Green Chem 8:861–867

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  4. Cortright RC, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  CAS  PubMed  Google Scholar 

  5. Mascal M, Nikitin EB (2008) Direct high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926

    Article  CAS  Google Scholar 

  6. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Article  CAS  PubMed  Google Scholar 

  7. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Bimass recalcitrance: engineering plants and enzymes for biomass production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  8. Deguchi S, Tsujii K, Horikoshi K (2008) Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions. Green Chem 10:623–626

    Article  CAS  Google Scholar 

  9. Kontturi E, Vuorinen T (2009) Indirect evidence of supramolecular changes within cellulose microfibrils of chemical pulp fibers upon drying. Cellulose 16:65–74

    Article  CAS  Google Scholar 

  10. vom Stein T, Grande P, Sibilla F, Commandeur U, Fischer R, Leitner W, de Maria PD (2010) Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chem 12:1844–1849

    Article  CAS  Google Scholar 

  11. Zhang M, Qi W, Liu R, Su R, Wu SM, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenerg 34:525–532

    Article  CAS  Google Scholar 

  12. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selectio strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  13. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical wate. Ind Eng Chem Res 39:2883–2890

    Article  CAS  Google Scholar 

  14. Jiang Y, Li X, Cao Q, Mu X (2011) Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides. J Nanopart Res 13:463–469

    Article  CAS  Google Scholar 

  15. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793

    Article  CAS  PubMed  Google Scholar 

  16. Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    Article  CAS  Google Scholar 

  17. Takagaki A, Tagusagawa C, Domen K (2008) Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem Commun 5363–5365

    Google Scholar 

  18. Dhepe PL, Sahu R (2010) A solid-acid-based process for the conversion of hemicellulose. Green Chem 12:2153–2156

    Article  CAS  Google Scholar 

  19. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47:5590–5592

    Article  CAS  Google Scholar 

  20. Ogaki Y, Shinozuka Y, Hara T, Ichikuni N, Shimazu S (2011) Hemicellulose decomposition and saccharides production from various plant biomass by sulfonated allophane catalyst. Catal Today 164:415–418

    Article  CAS  Google Scholar 

  21. Palkovits R, Tajvidi K, Ruppert AM, Procelewska J (2011) Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. Chem Commun 47:576–578

    Article  CAS  Google Scholar 

  22. Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11:1627–1632

    Article  CAS  Google Scholar 

  23. Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17:587–594

    Article  CAS  Google Scholar 

  24. Jiang Y, Li X, Wang X, Meng L, Wang H, Wang L, Wang X, Mu X (2012) Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation. Green Chem 14:2162–2167

    Article  CAS  Google Scholar 

  25. Li X, Jiang Y, Shuai L, Wang L, Meng L, Mu X (2012) Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J Mater Chem 22:1283–1289

    Article  Google Scholar 

  26. Li X, Jiang Y, Wang L, Meng L, Wang W, Mu X (2012) Effective low-temperature hydrolysis of cellulose catalyzed by concentrated H3PW12O40 under microwave irradiation. RSC Adv 2:6921–6925

    Article  CAS  Google Scholar 

  27. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–953

    Article  CAS  Google Scholar 

  28. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  CAS  PubMed  Google Scholar 

  29. Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52:104–107

    Article  CAS  Google Scholar 

  30. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601

    Article  CAS  Google Scholar 

  31. Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386

    Article  CAS  PubMed  Google Scholar 

  32. Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 45:5161–5163

    Article  CAS  Google Scholar 

  33. Luo C, Wang S, Liu H (2007) Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int Ed 46:7636–7639

    Article  CAS  Google Scholar 

  34. Ji N, Zhagn T, Zheng MY, Wang AQ, Wang H, Wang XD, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47:8510–8513

    Article  CAS  Google Scholar 

  35. Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem Int Ed 51:3249–3253

    Article  CAS  Google Scholar 

  36. Wang XC, Meng LQ, Wu F, Jiang YJ, Wang L, Mu XD (2012) Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts. Green Chem 14:758–765

    Article  CAS  Google Scholar 

  37. Wang XC, Wu F, Yao SX, Jiang YJ, Guan J, Mu XD (2012) Ni-Cu/ZnO-catalyzed hydrogenolysis of cellulose for the production of 1,2-alkanediols in hot compressed water. Chem Lett 41:476–478

    Article  CAS  Google Scholar 

  38. Xiao ZH, Jin SH, Pang M, Liang CH (2013) Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts. Green Chem 15:891–895

    Article  CAS  Google Scholar 

  39. Zhang J, Wu SB, Liu Y (2014) Direct conversion of cellulose into sorbitol over a magnetic catalyst in an extremely low concentration acid system. Energ Fuel 28:4242–4246

    Article  CAS  Google Scholar 

  40. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A (2010) Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chem 12:972–978

    Article  CAS  Google Scholar 

  41. Geboers J, de Vyver SV, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46:3577–3579

    Article  CAS  Google Scholar 

  42. ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. ChemSusChem 4:1017–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sun J, Liu H (2011) Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts. Green Chem 13:135–142

    Article  CAS  Google Scholar 

  44. Chen X, Wang X, Yao S, Mu X (2013) Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catal Commun 39:86–89

    Article  CAS  Google Scholar 

  45. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    Article  CAS  PubMed  Google Scholar 

  46. Zhu S, Qiu Y, Zhu Y, Hao S, Zheng H, Li Y (2013) Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids. Catal Today 212:120–126

    Article  CAS  Google Scholar 

  47. Zhou CH, Beltramini JN, Fan YX, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Article  PubMed  Google Scholar 

  48. Nakagawa Y, Tamura M, Tomishige K (2014) Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. J Mater Chem A 2:6688–6702

    Article  CAS  Google Scholar 

  49. Lange JP, Heide E, Buijtenen J, Price R (2012) Furfural-A promising platform for lignocellulosic biofuels. ChemSusChem 5:150–166

    Article  CAS  PubMed  Google Scholar 

  50. Xu WJ, Xia QN, Zhang Y, Guo Y, Wang YQ, Lu GZ (2011) Effective production of octane from biomass derivatives under mild conditions. ChemSusChem 4:1758–1761

    Article  CAS  PubMed  Google Scholar 

  51. Corma A, Torre O, Renz M (2011) High-quality diesel from hexose- and pentose-derived biomass platform molecules. ChemSusChem 4:1574–1577

    Article  CAS  PubMed  Google Scholar 

  52. Corma A, Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378

    Article  CAS  Google Scholar 

  53. Li GY, Li N, Wang ZQ, Li CZ, Wang AQ, Wang XD, Cong Y, Zhang T (2012) Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. ChemSusChem 5:1958–1966

    Article  CAS  PubMed  Google Scholar 

  54. Cao Q, Guan J, Peng GM, Zhou JW, Mu XD (2015) Solid acid-catalyzed conversion of furfuryl alcohol to alkyl tetrahydrofurfuryl ether. Catal Commun 58:76–79

    Article  CAS  Google Scholar 

  55. Zhang ZH, Dong K, Zhao ZB (2011) Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic–inorganic hybrid solid acid catalyst. ChemSusChem 4:112–118

    Article  CAS  PubMed  Google Scholar 

  56. Maldonado GMG, Assary RS, Dumesic JA, Curtiss LA (2012) Acid-catalyzed conversion of furfuryl alcohol to ethyl levulinate in liquid ethanol. Energ Environ Sci 5:8990–8997

    Article  CAS  Google Scholar 

  57. Hengne AM, Kamble SB, Rode CV (2013) Single pot conversion of furfuryl alcohol to levulinic esters and γ-valerolactone in the presence of sulfonic acid functionalized ILs and metal catalysts. Green Chem 15:2540–2547

    Article  CAS  Google Scholar 

  58. Neves P, Antunes MM, Russo PA, Abrantes JP, Lima S, Fernandes A, Pillinger M, Rocha SM, Ribeiro MF, Valente AA (2013) Production of biomass-derived furanic ethers and levulinate esters using heterogeneous acid catalysts. Green Chem 15:3367–3376

    Article  CAS  Google Scholar 

  59. García J, García-Marín H, Pires E (2014) Glycerol based solvents: synthesis, properties and applications. Green Chem 16:1007–1033

    Article  CAS  Google Scholar 

  60. Wegenhart BL, Liu S, Thom M, Stanley D, Abu-Omar MM (2012) Solvent-free methods for making acetals derived from glycerol and furfural and their use as a biodiesel fuel component. ACS Catal 2:2524–2530

    Article  CAS  Google Scholar 

  61. Zhang B, Zhu YL, Ding GQ, Zheng HY, Li YW (2012) Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst. Green Chem 14:3402–3409

    Article  CAS  Google Scholar 

  62. Mizugaki T, Yamakawa T, Nagatsu Y, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K (2014) Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst. ACS Sus Chem Eng 2:2243–2247

    Article  CAS  Google Scholar 

  63. Liu SB, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReOx/SiO2 bifunctional catalyst. Green Chem 16:617–626

    Article  Google Scholar 

  64. Xu WJ, Wang HF, Liu XH, Ren JW, Wang YQ, Lu GZ (2011) Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chem Commun 47:3924–3926

    Article  CAS  Google Scholar 

  65. Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K, Tomishige K (2009) Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem Commun 15:2035–2037

    Article  CAS  Google Scholar 

  66. Chia M, Pagan-Torres YJ, Hibbitts D, Tan QH, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. J Am Chem Soc 133:12675–12689

    Article  CAS  PubMed  Google Scholar 

  67. Koso S, Ueda N, Shinmi Y, Okumura K, Kizuka T, Tomishige K (2009) Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. J Catal 267:89–92

    Article  CAS  Google Scholar 

  68. Pholjaroen B, Li N, Huang YQ, Li L, Wang AQ, Zhang T (2015) Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over vanadium modified Ir/SiO2 catalyst. Catal Today 245:93–99

    Article  CAS  Google Scholar 

  69. Nakagawa Y, Tomishige K (2012) Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136–143

    Article  CAS  Google Scholar 

  70. Guan J, Peng GM, Cao Q, Mu XD (2014) Role of MoO3 on a rhodium catalyst in the selective hydrogenolysis of biomass-derived tetrahydrofurfuryl alcohol into 1,5-pentanediol. J Phys Chem C 118:25555–25566

    Article  CAS  Google Scholar 

  71. Alonso-Fagfflndez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with VOx/Al2O3 catalysts. ChemSusChem 5:1984–1990

    Article  CAS  Google Scholar 

  72. Li XL, Deng J, Shi J, Pan T, Yu CG, Xu HJ, Fu Y (2015) Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts. Green Chem 17:1038–1046

    Article  CAS  Google Scholar 

  73. Procopio A, Costanzo P, Curini M, Nardi M, Oliverio M, Sindona G (2013) Erbium(III) chloride in ethyl lactate as a smart ecofriendly system for efficient and rapid stereoselective synthesis oftrans-4,5-diaminocyclopent-2-enones. ACS Sus Chem Eng 1:541–544

    Article  CAS  Google Scholar 

  74. Saha B, Abu-Omar MM (2013) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38

    Article  Google Scholar 

  75. Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem Int Ed 122:6766–6768

    Article  Google Scholar 

  76. Ráman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  CAS  Google Scholar 

  77. Nishimura S, Ikeda N, Ebitani K (2014) Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst. Catal Today 232:89–98

    Article  CAS  Google Scholar 

  78. Chidambaram M, Bell AT (2010) A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem 12:1253–1262

    Article  CAS  Google Scholar 

  79. Chatterjee M, Ishizaka T, Kawanami H (2014) Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide–water: a tunable approach to dimethylfuran selectivity. Green Chem 16:1543–1551

    Article  CAS  Google Scholar 

  80. Partenheimer W, Grushin VV (2001) Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal/bromide catalysts. Adv Synth Catal 343:102–111

    Article  CAS  Google Scholar 

  81. Yang WR, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels. ChemSusChem 3:597–603

    Article  CAS  PubMed  Google Scholar 

  82. Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14:1626–1634

    Article  CAS  Google Scholar 

  83. Cao Q, Liang WY, Guan J, Wang L, Qu Q, Zhang XZ, Wang XC, Mu XD (2014) Catalytic synthesis of 2,5-bis-methoxymethylfuran: A promising cetane number improver for diesel. Appl Catal A 481:49–53

    Article  CAS  Google Scholar 

  84. Lanzafame P, Temi DM, Perathoner S, Centi G, Macario A, Aloise A, Giordano G (2011) Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catal Today 175:435–441

    Article  CAS  Google Scholar 

  85. Buntara T, Noel S, Phua PH, Melin-Cabrera I, Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chem Int Ed 50:7083–7087

    Article  CAS  Google Scholar 

  86. Ma JP, Du ZT, Xu J, Chu QH, Pang Y (2011) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. ChemSusChem 4:51–54

    Article  CAS  PubMed  Google Scholar 

  87. Liu B, Zhang ZH, Lv KL, Deng KJ, Duan HM (2014) Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide. Appl Catal A 472:64–71

    Article  CAS  Google Scholar 

  88. Lilga MA, Hallen RT, Gray M (2010) Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top Catal 53:1264–1269

    Article  CAS  Google Scholar 

  89. Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A (2009) Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2:672–675

    Article  CAS  PubMed  Google Scholar 

  90. Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: one pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. J Catal 265:109–116

    Article  CAS  Google Scholar 

  91. Gupta NK, Nishimura S, Takagaki A, Ebitani K (2011) Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem 13:824–827

    Article  CAS  Google Scholar 

  92. Du ZT, Ma JP, Wang F, Liu JX, Xu J (2011) Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chem 13:554–557

    Article  CAS  Google Scholar 

  93. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49:5510–5514

    Article  CAS  Google Scholar 

  94. Werpy T, Petersen G (2004) Top value added chemicals from biomass, Volume I: results of screening for potential candidates from sugars and synthesis gas. DOE/GO-102004-1992

    Google Scholar 

  95. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:9–554

    Article  CAS  Google Scholar 

  96. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654

    Article  CAS  Google Scholar 

  97. Cok B, Tsiropoulos I, Roes AL, Patel MK (2014) Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuel Bioprod Bioref 8:16–29

    Article  CAS  Google Scholar 

  98. Willke Th, Vorlop K-D (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    Article  CAS  PubMed  Google Scholar 

  99. Rosi L, Frediani M, Frediani P (2010) Isotopomeric diols by “one-pot” Ru-catalyzed homogeneous hydrogenation of dicarboxylic acids. J Org Chem 695:1314–1322

    Article  CAS  Google Scholar 

  100. Luque R, Clark JH, Yoshida K, Gai PL (2009) Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chem Commun 35:5303–5307

    Google Scholar 

  101. Hong UG, Park HW, Lee JJ (2012) Hydrogenation of succinic acid to γ-butyrolactone (GBL) over ruthenium catalyst supported on surfactant-templated mesoporous carbon. J Ind Eng Chem 18:462–468

    Article  CAS  Google Scholar 

  102. Hong UG, Kim JK, Lee J, Lee JK, Song JH, Yi J, Song IK (2014) Hydrogenation of succinic acid to tetrahydrofuran (THF) over ruthenium–carbon composite (Ru–C) catalyst. Appl Catal A 469:466–471

    Article  CAS  Google Scholar 

  103. Hong UG, Lee JK, Hwang S, Song IK (2011) Hydrogenation of succinic acid to γ-butyrolactone (GBL) over palladium catalyst supported on alumina xerogel: effect of acid density of the catalyst. Catal Lett 141:332–338

    Article  CAS  Google Scholar 

  104. Rao VNM, Del W (1988) Process for preparing butyrolactones and butanediols. US4782167 A

    Google Scholar 

  105. Chung S-H, Park Y-M, Kim M-S, Lee K-Y (2012) The effect of textural properties on the hydrogenation of succinic acid using palladium incorporated mesoporous supports. Catal Today 185:205–210

    Article  CAS  Google Scholar 

  106. Tapin B, Epron F, Especel C, Ly BK, Pinel C, Besson M (2013) Study of monometallic Pd/TiO2 catalysts for the hydrogenation of succinic acid in aqueous phase. ACS Catal 3:2327–2335

    Article  CAS  Google Scholar 

  107. Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717

    Article  CAS  Google Scholar 

  108. Minh DP, Besson M, Pinel C, Fuertes P, Petitjean C (2010) Aqueous-phase hydrogenation of biomass-based succinic acid to 1,4-butanediol over supported bimetallic catalysts. Top Catal 53:1270–1273

    Article  CAS  Google Scholar 

  109. Shao ZF, Li C, Di X, Xiao ZH, Liang CH (2014) Aqueous-phase hydrogenation of succinic acid to γ-butyrolactone and tetrahydrofuran over Pd/C, Re/C, and Pd−Re/C Catalysts. Ind Eng Chem Res 53:9638–9645

    Article  CAS  Google Scholar 

  110. Hong UG, Park HW, Lee J, Hwang S, Kwak J, Yi J, Song I (2013) Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon. J Nanosci Nanotechno 13:7448–7453

    Article  CAS  Google Scholar 

  111. Zhang B, Zhu Y, Ding G, Zheng H, Li Y (2012) Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to gamma-butyrolactone. Appl Catal A 443–444:191–201

    Article  CAS  Google Scholar 

  112. Yu L, Du X-L, Yuan J, Liu Y-M, Cao Y, He H-Y, Fan K-N (2013) A versatile aqueous reduction of bio-based carboxylic acids using syngas as a hydrogen source. ChemSusChem 6:42–46

    Article  CAS  PubMed  Google Scholar 

  113. Dong L-L, He L, Tao G-H, Hu C-W (2013) High yield of ethyl valerate from the esterification of renewable valeric acid catalyzed by amino acid ionic liquids RSC Adv 3:4806–4813

    CAS  Google Scholar 

  114. Klement T, Büchs J (2013) Itaconic acid–a biotechnological process in change. Bioresource Technol 135:422–431

    Article  CAS  Google Scholar 

  115. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295

    Article  CAS  PubMed  Google Scholar 

  116. Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb Technol 39:824–827

    Article  CAS  Google Scholar 

  117. Zhang XX, Ma F, Lee DJ (2009) Recovery of itaconic acid from supersaturated waste fermentation liquor. J Taiwan Inst Chem E 40:583–585

    Article  CAS  Google Scholar 

  118. Li L, Liu S, Xu J, Yu S, Liu F, Xie C, Ge X, Ren J (2013) Esterification of itaconic acid using Ln ∼ SO42−/TiO2–SiO2 (Ln = La3+, Ce4+, Sm3+) as catalysts. J Mol Catal A 368–369:24–30

    Google Scholar 

  119. Szöllősi G, Balázsik K, Bartók M (2007) Enantioselective hydrogenation of itaconic acid over cinchona alkaloid modified supported palladium catalyst. Appl Catal A 319:193–201

    Article  CAS  Google Scholar 

  120. Fischer R, Pinkos R, Wulff-Döring J (2001) Method for producing aliphatic alcohols. US6204417 B1

    Google Scholar 

  121. Xu X, Zhao Y (2010) Method for the hydrogenation of Itaconic acid. CN101781169 A

    Google Scholar 

  122. Geilen FMA, Engendahl B, Hölscher M, Klankermayer J, Leitner W (2011) Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study. J Am Chem Soc 133:14349–14358

    Article  CAS  PubMed  Google Scholar 

  123. Li S, Wang XC, Liu XR, Xu GQ, Han S, Mu XD (2015) Aqueous-phase hydrogenation of biomass-derived itaconic acid to methyl-γ-butyrolactone over Pd/C catalysts: effect of pretreatments of active carbon. Catal Comm 61:92–96

    Article  CAS  Google Scholar 

  124. Le Nôtre J, Witte-van Dijk SCM, van Haveren J, Scott EL, Sanders JPM (2014) Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts. ChemSusChem 7:2712–2720

    Article  PubMed  CAS  Google Scholar 

  125. Martinez FAC, Balciunas EM, Salgado JM, González JMD, Converti A, de Souza Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83

    Article  CAS  Google Scholar 

  126. Burns R, Jones DT, Ritchie PD (1935) Studies in pyrolysis: Part I. The pyrolysis of derivatives of alpha-acetoxy propionic acid and related substances. J Chem Soc 400–406

    Google Scholar 

  127. Ratchford WP, Fisher CH (1945) Methyl acrylate by pyrolysis of methyl acetoxypropionate. Ind Eng Chem 37:38–387

    Article  Google Scholar 

  128. Atwood FC (1949) Process of making alkyl acrylates. US Pat 2464364

    Google Scholar 

  129. Holmen RE (1958) Acrylates by catalytic dehydration of lactic acid and lactates. US Pat 2859240

    Google Scholar 

  130. Abe T, Hieda S (1990) EP Pat 0379691

    Google Scholar 

  131. Hong J-H, Lee J-M, Kim H-R, Hwang Y-K, Chang J-S, Halligudi SB, Han Y-H (2011) Efficient and selective conversion of methyl lactate to acrylic acid using Ca3(PO4)2–Ca2(P2O7) composite catalysts. Appl Catal A 396:194–200

    Article  CAS  Google Scholar 

  132. Zhang J, Zhao Y, Pan M, Feng X, Ji W, Au C-T (2011) Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal 1:32–41

    Article  CAS  Google Scholar 

  133. Krämer H (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag-GmbH & Co, KGaA

    Google Scholar 

  134. Antons S (1998) Process for the preparation of optically active alcohols. US Pat 5731479

    Google Scholar 

  135. Zhang Z, Jackson JE, Miller DJ (2001) Aqueous-phase hydrogenation of lactic acid to propylene glycol. Appl Catal A 219:89–98

    Article  CAS  Google Scholar 

  136. Mao B-W, Cai Z-Z, Huang M-Y, Jiang Y-Y (2003) Hydrogenation of carboxylic acids catalyzed by magnesia-supported poly-γ-aminopropylsiloxane-Ru complex. Polym Adv Technol 14:278–281

    Article  CAS  Google Scholar 

  137. Luo G, Yan S, Qiao M, Zhuang J, Fan K (2004) Effect of tin on Ru-B/γ-Al2O3 catalyst for the hydrogenation of ethyl lactate to 1,2-propanediol. Appl Catal A 275:95–102

    Article  CAS  Google Scholar 

  138. Primo A, Concepcion P, Corma A (2011) Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chem Commun 47:3613–3615

    Article  CAS  Google Scholar 

  139. Cortright RD, Sanchez-Castillo M, Dumesic JA (2002) Conversion of biomass to 1,2-propanediol by selective catalytic hydrogenation of lactic acid over silica-supported copper. Appl Catal B 39:353–359

    Article  CAS  Google Scholar 

  140. Huang L, Zhu Y, Zheng H, Du M, Li Y (2008) Vapor-phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over supported metal catalysts. Appl Catal A 349:204–211

    Article  CAS  Google Scholar 

  141. Takasu A, Narukawa Y, Hirabayashi T (2006) Direct dehydration polycondensation of lactic acid catalyzed by water-stable Lewis acids. J Polym Sci, Part A: Polym Chem 44:5247–5253

    Article  CAS  Google Scholar 

  142. Kim KW, Woo SI (2002) Synthesis of high-molecular-weight poly (L-lactic acid) by direct polycondensation. Macromol Chem Phys 203:2245–2250

    Article  CAS  Google Scholar 

  143. Upare PP, Hwang YK, Chang J-S, Hwang DW (2012) Synthesis of lactide from alkyl lactate via a prepolymer route. Ind Eng Chem Res 51:4837–4842

    Article  CAS  Google Scholar 

  144. Tamura M, Tamura R, Takeda Y, Nakagawa Y, Tomishige K (2014) Catalytic hydrogenation of amino acids to amino alcohols with complete retention of configuration. Chem Commun 50:6656–6659

    Article  CAS  Google Scholar 

  145. Casalino M, Latella MC, Prosseda G (2005) Molecular evolution of the lysine decarboxylase-defective phenotype in Shigella sonnei. Int J Medical Microbiol 294:503–512

    Article  CAS  Google Scholar 

  146. Kiyohiko N, Shuichi E, Yukiko M (2003) Enzymatic method for producing cadaverine dicarboxylate and its use for the production of nylon: Japan, 147688

    Google Scholar 

  147. Ager DJ, Prakash I, Schaad DR (1996) 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 96:835–876

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xindong Mu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jiang, Y., Wang, X., Cao, Q., Dong, L., Guan, J., Mu, X. (2016). Chemical Conversion of Biomass to Green Chemicals. In: Xian, M. (eds) Sustainable Production of Bulk Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7475-8_2

Download citation

Publish with us

Policies and ethics