Advertisement

Efficiency of Luminescence of (Lu,Gd)2SiO5:Ce (LGSO:Ce) Crystal Sensory Material in the X-Ray Imaging Range

  • C. Michail
  • I. Valais
  • S. David
  • A. Bakas
  • N. Kalivas
  • G. Fountos
  • I. Kandarakis
  • Panayotis H. Yannakopoulos
  • D. Nikolopoulos
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The aim of the present study was to investigate the absolute luminescence efficiency (AE) of mixed oxyorthosilicate (Lu,Gd)2SiO5:Ce (LGSO:Ce) single crystals, under X-ray irradiation. Six (Lu,Gd)2SiO5:Ce crystal samples, with dimensions of 3 × 3 × 5, 3 × 3 × 6, 3 × 3 × 10, 3 × 3 × 15, 10 × 10 × 10 and 10 × 10 × 20 mm3 were examined. The light emitted by the crystals, was evaluated by performing measurements of the AE under X-ray exposure conditions, with tube voltages ranging from 50 to 130 kV. Results were compared with previously published data for GSO:Ce and LSO:Ce crystals. The spectral compatibility of the (Lu,Gd)2SiO5:Ce crystal, with various existing optical detectors, was investigated after emission spectra measurements. Absolute efficiency was found maximum at 130 kVp for the 3 × 3 × 15 mm3 (Lu,Gd)2SiO5:Ce crystal (25.40 E.U). AE of the 10 × 10 × 10 mm3 (Lu,Gd)2SiO5:Ce crystal was found higher than both GSO:Ce and LSO:Ce crystals, in the whole X-ray tube range. The emission spectrum of (Lu,Gd)2SiO5:Ce is excellent matched with the spectral sensitivities of photocathodes and silicon photomultipliers often employed in radiation detectors. Considering the high luminescence efficiency values and the spectral compatibility with the various photodetectors, (Lu,Gd)2SiO5:Ce crystal could be considered for use in combined medical imaging detectors i.e. integrated PET/CT detectors.

Keywords

Inorganic scintillators Radiation detectors (Lu,Gd)2SiO5:Ce 

References

  1. 1.
    Bergeron M, Cadorette J, Tetrault M, Beaudoin J, Leroux J, Fontaine R, Lecomte R (2014) Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research. Phys Med Biol 59:661–678CrossRefGoogle Scholar
  2. 2.
    Boone JM (2000) Handbook of medical imaging. In: Physics and psycophysics, vol 1. SPIE Press, Bellingham, pp 36–57Google Scholar
  3. 3.
    Cooke D, Bennett B, McClellan K, Roper J (2001) X-ray-induced thermally stimulated luminescence of cerium-doped gadolinium oxyorthosilicate. Radiat Meas 33:403–408CrossRefGoogle Scholar
  4. 4.
    Ermis E, Celiktas C, Pilicer E (2014) A method to enhance coincidence time resolution with applications for medical imaging systems (TOF/PET). Radiat Meas 62:52–59CrossRefGoogle Scholar
  5. 5.
    Hamamatsu Photonics, MPPC (multi-pixel photon counters) http://www.hamamatsu.com/us/en/product/category/3100/4004/4113/index.html#Google Scholar
  6. 6.
    Jarý V, Mihóková E, Mareš J, Beitlerová A, Kurtsev D, Sidletskiy O, Nikl M (2014) Comparison of the scintillation and luminescence properties of the (Lu1-xGdx)2SiO5:Ce single crystal scintillators. J Phys D Appl Phys 47:365304CrossRefGoogle Scholar
  7. 7.
    Kobayashi M, Aogaki S, Takeutchi F, Tamagawa Y, Usuki Y (2012) Performance of thin long scintillator strips of GSO:Ce, LGSO:Ce and LuAG:Pr for low energy γ-rays. Nucl Inst Methods Phys Res A 693:226–235CrossRefADSGoogle Scholar
  8. 8.
    Kononets V, Benamara O, Patton G, Dujardin C, Gridin S, Dobrovolskas D, Vaitkevicius A, Tamulaitis G, Baumer V, Sidletskiy O, Lebbou K (2015) Growth of Ce-doped LGSO fiber-shaped crystals by the micro pulling down technique. J Cryst Growth 412:95–102CrossRefADSGoogle Scholar
  9. 9.
    Kurtsev D, Sidletskiy O, Neicheva S, Bondar V, Zelenskaya O, Tarasov V, Biatov M, Gektin A (2014) LGSO:Ce scintillation crystal optimization by thermal treatment. Mater Res Bull 52:25–29CrossRefGoogle Scholar
  10. 10.
    Kwon S, Lee J (2014) Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array. Nucl Inst Methods Phys Res A 761:39–45CrossRefADSGoogle Scholar
  11. 11.
    Lee C, Kwon S, Ko G, Ito M, Yoon H, Lee J (2012) A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes. Phys Med Biol 57:191–207CrossRefGoogle Scholar
  12. 12.
    Magnan P (2003) Detection of visible photons in CCD and CMOS: a comparative view. Nucl Instr Meth Phys Res A 504:199–212CrossRefADSGoogle Scholar
  13. 13.
    Michail CM, Fountos GP, Valais IG, Kalivas N, Liaparinos P, Kandarakis IS, Panayiotakis GS (2011) Evaluation of the red emitting Gd2O2S:Eu powder scintillator for use in indirect X-ray digital mammography detectors. ΙΕΕΕ Trans Nucl Sci 58(5):2503–2511ADSGoogle Scholar
  14. 14.
    Michail C, Kalivas N, Valais I, David S, Seferis I, Toutountzis A, Karabotsos A, Liaparinos P, Fountos G, Kandarakis I (2013) On the response of GdAlO3:Ce powder scintillators. J Lumin 144:45–52CrossRefGoogle Scholar
  15. 15.
    Michail C, Valais I, Seferis I, Kalivas N, David S, Fountos G, Kandarakis I (2014) Measurement of the luminescence properties of Gd2O2S:Pr, Ce, F powder scintillators under X-ray radiation. Radiat Meas 70:59–64CrossRefGoogle Scholar
  16. 16.
    Michail C, David S, Bakas A, Kalivas N, Fountos G, Kandarakis I, Valais I (2015) Luminescence efficiency of (Lu, Gd)2SiO5:Ce (LGSO:Ce) crystals under X-ray radiation. Radiat Meas 80:1–9CrossRefGoogle Scholar
  17. 17.
    Moszynski M, Nassalski A, Czarnacki W, Syntfeld-Kazuch A, Wolski D, Batsch T, Usui T, Shimizu S, Shimura N, Kurashige K, Kurata K, Ishibashi H (2007) Energy resolution of LGSO scintillators. IEEE Trans Nucl Sci 54:725–731CrossRefADSGoogle Scholar
  18. 18.
    Moszynski M (2010) Energy resolution and non-proportionality of scintillation detectors – new observations. Radiat Meas 45:372–376CrossRefGoogle Scholar
  19. 19.
    Nishikido F, Obata T, Shimizu K, Suga M, Inadama N, Yoshida E, Ito H, Yamaya T (2014) Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil. Nucl Inst Methods Phys Res A 756:6–13CrossRefADSGoogle Scholar
  20. 20.
    Rowlands JA, Yorkston J (2000) Flat panel detectors for digital radiography. In: Beutel J, Kundel HL, Van Metter RL (eds) Handbook of medical imaging: physics and psychophysics. SPIE Press, Bellingham, pp 223–328CrossRefGoogle Scholar
  21. 21.
    SensL, Silicon Photomultipliers. http://sensl.com/products/silicon-photomultipliers/
  22. 22.
    Sidletskiy O, Bondar V, Grynyov B, Kurtsev D, Baumer V, Shtitelman Z, Tkachenko S, Zelenskaya O, Starzhinsky N, Belikov K, Tarasov V (2009) Growth of LGSO:Ce crystals by the Czochralski method. Crystallogr Rep 54(7):1256–1260CrossRefADSGoogle Scholar
  23. 23.
    Sidletskiy O, Baumer V, Gerasymov I, Grinyov B, Katrunov K, Starzhinsky N, Tarasenko O, Tarasov V, Tkachenko S, Voloshina O, Zelenskaya O (2010) Gadolinium pyrosilicate single crystals for gamma ray and thermal neutron monitoring. Radiat Meas 45:365–368CrossRefGoogle Scholar
  24. 24.
    Sidletskiy O, Belsky A, Gektin A, Neicheva S, Kurtsev D, Kononets V, Dujardin C, Lebbou K, Zelenskaya O, Tarasov V, Belikov K, Grinyov B (2012) Structure-property correlations in a Ce-doped (Lu, Gd):Ce scintillator. Cryst Growth Des 12:4411–4441CrossRefGoogle Scholar
  25. 25.
    Sidletskiy O, Grinyov B, Kurtsev D, Gerasymov I, Zelenskaya O, Artikov A, Baranov V, Budagov J, Glagolev V, Davydov Y, Tarasov V, Tereshchenko V (2014) Evaluation of LGSO:Ce scintillator for high energy physics experiments. Nucl Inst Methods Phys Res A 735:620–623CrossRefADSGoogle Scholar
  26. 26.
    Sreebunpeng K, Chewpraditkul W, Nikl M (2014) Luminescence and scintillation properties of advanced Lu3Al5O12:Pr3+ single crystal scintillators. Radiat Meas 60:42–45CrossRefGoogle Scholar
  27. 27.
    Strzep A, Ryba-Romanowski W, Berkowski M (2014) Effect of temperature and excitation wavelength on luminescent characteristics of Lu2SiO5-Gd2SiO5 solid solution crystals co-doped with Ce3+ and Sm3+. J Lumin 153:242–244CrossRefGoogle Scholar
  28. 28.
    Valais I, David S, Michail C, Konstantinidis A, Kandarakis I, Panayiotakis G (2007) Investigation of luminescence properties of the LSO:Ce, LYSO:Ce and GSO:Ce crystal scintillators under low-energy γ-ray excitation used in nuclear imaging. Nucl Inst Methods Phys Res A 581:99–102CrossRefADSGoogle Scholar
  29. 29.
    Valais I, Kandarakis I, Nikolopoulos D, Michail C, David S, Loudos G, Cavouras D, Panayiotakis G (2007) Luminescence properties of (Lu, Y)2SiO5:Ce and Gd2SiO5:Ce single crystal scintillators under X-ray excitation, for use in medical imaging systems. ΙΕΕΕ Trans Nucl Sci 54(1):11–18ADSGoogle Scholar
  30. 30.
    Valais I, Michail C, David S, Costaridou L, Nomicos C, Panayiotakis G, Kandarakis I (2008) A comparative study of the luminescence properties of LYSO:Ce, LSO:Ce, GSO:Ce and BGO single crystal scintillators for use in medical X-ray imaging. Physica Medica 24:122–125CrossRefGoogle Scholar
  31. 31.
    Valais I, David S, Michail C, Nomicos C, Panayiotakis G, Kandarakis I (2009) Comparative evaluation of single crystal scintillators under X-ray imaging conditions. J Inst 4, P06013CrossRefADSGoogle Scholar
  32. 32.
    Valais I, Michail C, David S, Liaparinos P, Fountos G, Paschalis T, Kandarakis I, Panayiotakis G (2010) Comparative investigation of Ce3+ doped scintillators in a wide range of photon energies covering X-ray CT, nuclear medicine and megavoltage radiation therapy portal imaging applications. ΙΕΕΕ Trans Nucl Sci 57(1):3–7ADSGoogle Scholar
  33. 33.
    Yamamoto S, Imaizumi M, Watabe T, Watabe H, Kanai Y, Shimosegawa E, Hatazawa J (2010) Development of a Si-PM-based high-resolution PET system for small animals. Phys Med Biol 55:5817–5831CrossRefGoogle Scholar
  34. 34.
    Yamaya T, Mitsuhashi T, Matsumoto T, Inadama N, Nishikido F, Yoshida E, Murayama H, Kawai H, Suga M, Watanabe M (2011) A SiPM-based isotropic-3D PET detector X’tal cube with a three-dimensional array of 1 mm3 crystals. Phys Med Biol 56:6793–6807CrossRefGoogle Scholar
  35. 35.
    Yanagida T, Fujimoto Y, Yamaji A, Kawaguchi N, Kamada K, Totsuka D, Fukuda K, Yamanoi K, Nishi R, Kurosawa S, Shimizu T, Sarukura N (2013) Study of the correlation of scintillation decay and emission wavelength. Radiat Meas 55:99–102CrossRefGoogle Scholar
  36. 36.
    Yanagida T, Fujimoto Y, Watanabe K (2014) Dopant concentration dependence of radiation-induced positive hysteresis of Ce:GSO and Ce:GSOZ. Radiat Meas 61:16–20CrossRefGoogle Scholar
  37. 37.
    Zorenko Y, Gorbenko V, Savchyn V, Zorenko T, Grinyov B, Fedorov A, Mares J, Nikl M, Kucera M (2013) Lu2SiO5:Ce and Y2SiO5:Ce single crystals and single crystalline film scintillators: comparison of the luminescent and scintillation properties. Radiat Meas 56:84–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • C. Michail
    • 1
  • I. Valais
    • 1
  • S. David
    • 1
  • A. Bakas
    • 2
  • N. Kalivas
    • 1
  • G. Fountos
    • 1
  • I. Kandarakis
    • 1
  • Panayotis H. Yannakopoulos
    • 3
  • D. Nikolopoulos
    • 3
  1. 1.Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical EngineeringTechnological Educational Institute of AthensEgaleo, AthensGreece
  2. 2.Department of Medical Radiologic TechnologyTechnological Educational Institute of AthensAthensGreece
  3. 3.Department of Electronic Computer Systems EngineeringPiraeus University of Applied SciencesAigaleoGreece

Personalised recommendations