Neutron Detectors Based on 10B-Containing Nanomaterials

  • Levan Chkhartishvili
  • Otar Tsagareishvili
  • George Tavadze
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Due to of deep penetration ability and strong secondary ionization, neutron-radiation is the mostly dangerous ionizing radiation for humans and environment. Developments in materials science provide neutron-sensor devices with enhanced selectivity and sensitivity. Among them, detectors based on boron-containing thin films are the naturally best because of special neutron-capture properties of 10B isotope. In this work, there are evaluated the key physical-technical characteristics of neutron detectors made from 10B-enriched semi-conducting materials: thickness of the effective working layer ~10 μm, releasing rate of the 10B – n interaction products ~1015/cm3 s, electron–hole pairs generating rate in process of neutron absorption ~1022/cm3 s, rate of rise in the temperature ~10 K/s, and device mean operating time ~10−4 s.


Neutron detectors Boron 


  1. 1.
    Martin JE (2008) Physics for radiation protection: a handbook. Wiley/VCH, WeinheimGoogle Scholar
  2. 2.
    Potapov SP (1961) On application of stable isotopes of boron. At Energy 10:244–252Google Scholar
  3. 3.
    Plešek J (1992) Potential applications of the boron cluster compounds. Chem Rev 92(2):269–273CrossRefGoogle Scholar
  4. 4.
    Grimes RN (2004) Boron clusters come of age. J Chem Educ 81(5):658–672CrossRefGoogle Scholar
  5. 5.
    Chkhartishvili LS (2009) Isotopic effects of boron (Review). Trends Inorg Chem 11:105–167Google Scholar
  6. 6.
    James RB, Burger A, Franks LA, Fiederle M (eds) (2012) Hard X-ray, gamma-ray, and neutron detector physics XIV. SPIE Proc, 8507:1–237Google Scholar
  7. 7.
    Cooper HS (1961) Boron. In: Hampel CA (ed) Rare metals handbook. Reynolds Publ. Corp/Chapman & Hall Ltd, New York/London, pp 69–81Google Scholar
  8. 8.
    Gaulé GK, Ross RL, Bloom JL (1965) 10B/11B thermistors pairs and their applications. In: Boron: preparation, properties and applications. Plenum Press, New York, pp 317–338CrossRefGoogle Scholar
  9. 9.
    Costato M, Fontanesi S (1969) Studio delle propretiá fisiche del Boro. Semin. Mat e Fis Univ Modena Atti, 18:231–281Google Scholar
  10. 10.
    Lund JC, Olscher F, Shah KS (1990) Solid state neutron detectors from boron-rich semiconducting compounds. In: Abstract 10th international symposium Boron, Borides & Rel. Comp. New Mexico University, Albuquerque, 100–100Google Scholar
  11. 11.
    Emin D, Aselage TL (2005) A proposed boron-carbide-based solid-state neutron detector. J Appl Phys 97:013529, 1–3ADSCrossRefGoogle Scholar
  12. 12.
    Emin D (2008) Unusual properties of icosahedral boron-rich solids. J Solid State Chem 179(9):2791–2798ADSCrossRefGoogle Scholar
  13. 13.
    Robertson BW, Adenwalla S, Harken A, Welsch P, Brand JI, Dowben PA, Claassen JP (2002) A class of boron-rich solid-state neutron detectors. Appl Phys Lett 80(19):3644–3646ADSCrossRefGoogle Scholar
  14. 14.
    Oda K, Miyake H, Michijima M (1987) CR39 – BN detector for thermal neutron dosimetry. J Nucl Sci Technol 24(2):129–134CrossRefGoogle Scholar
  15. 15.
    Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Marunashi A, Ono K (2013) Study on the dose evaluation using glass rod dosimeter for boron neutron capture therapy. IFMBE Proc 39:1142–1144CrossRefGoogle Scholar
  16. 16.
    Majety S, Li J, Cao XK, Dahal R, Lin JY, Jiang HX (2012) Metal–semiconductor–metal neutron detectors based on hexagonal boron nitride epitaxial layers. SPIE Proc 85070R:1–9Google Scholar
  17. 17.
    Robinson JA, Wetherington M, Hughes Z, la Bella III M, Bresnehan M (2012) Investigation of graphene-based nanoscale radiation sensitive materials. SPIE Proc 83730J:1–9Google Scholar
  18. 18.
    Kumashiro Y, Kudo K, Matsumoto K, Okada Y, Koshira T (1987) Thermal neutron irradiation experiments on 10BP single crystal wafers. In: Proceedings of the 9th international symposium Boron, Borides & Rel. Comp. Duisburg University Press, Duisburg, pp 371–372Google Scholar
  19. 19.
    Griffith RV, Hankins DE, Gammage RB, Wheeler RV (1979) Recent developments in personnel neutron dosimeters-alpha (Review). Health Phys 36(3):253–260CrossRefGoogle Scholar
  20. 20.
    Tsuruta T, Takagaki M (1982) Neutron dosimetry by the spark counting of tracks in boron-doped film. Health Phys 43(5):705–710CrossRefGoogle Scholar
  21. 21.
    Tsuruta T, Juto N (1984) Neutron dosimetry with boron-doped CR – 39 plastic. J Nucl Sci Technol 21(11):871–876CrossRefGoogle Scholar
  22. 22.
    Kikuchi R, Kawamoto T, Lee CH, Kawanishi M (1983) The TSEE from the sintered Li2B4O7 crystals, the glass ceramics of Li2B4O7 + SiO2 and the thin evaporated layer of Li2B4O7 on the LiF single crystal. Radiat Prot Dosim 4(3–4):196–200Google Scholar
  23. 23.
    Kervalishvili PJ (2012) Boron isotopes doped germanium and silicon based gamma and neutron radiation nanosensors. In: Cont. 2nd international conference “Nanotechnologies”. Nekeri, Tbilisi, pp 120–121Google Scholar
  24. 24.
    Chkhartishvili L (2014) Neutron-fluence nanosensors based on boron-containing materials. In: Nanomaterials for environmental protection. Wiley, Hoboken, Chap 26, pp 445–449Google Scholar
  25. 25.
    Murty KL, Charit I (2012) An introduction to nuclear materials: fundamentals and applications. Wiley/VCH, BerlinGoogle Scholar
  26. 26.
    Chkhartishvili L (2013) Interaction between neutron-radiation and boron-containing materials. In: Radiation synthesis of materials and compounds. CRC Press/Taylor & Francis Group, Boca Raton, Chap3, pp 43–80Google Scholar
  27. 27.
    Chkhartishvili L, Tsagareishvili O, Gabunia D (2012) 10B-based materials for neutron-shielding. In: Proceedings of the international conference Mod. Technol. & Meth. Inorg. Mater. Sci. Meridian, Tbilisi, pp 188–202Google Scholar
  28. 28.
    Tsagareishvili GV, Tavadze FN (1978) Semiconducting boron. Nauka, MoscowGoogle Scholar
  29. 29.
    Tsagareishvili GV, Tsagareishvili DS (1990) Thermal and elastic properties of boron. Metsniereba, TbilisizbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Levan Chkhartishvili
    • 1
    • 2
  • Otar Tsagareishvili
    • 2
  • George Tavadze
    • 2
  1. 1.Department of Engineering PhysicsGeorgian Technical UniversityTbilisiGeorgia
  2. 2.Laboratory for Boron & Powdered Composite MaterialsFerdinand Tavadze Institute of Metallurgy & Materials ScienceTbilisiGeorgia

Personalised recommendations