Skip to main content

Long Noncoding RNAs: Critical Regulators for Cell Lineage Commitment in the Central Nervous System

  • Chapter
  • First Online:
Transcriptomics and Gene Regulation

Part of the book series: Translational Bioinformatics ((TRBIO,volume 9))

  • 2552 Accesses

Abstract

Less than 3 % of the human genome encodes protein sequences and the majority of transcribed sequences are noncoding. Long noncoding RNAs (lncRNAs) refer to transcripts lacking in protein-coding potential and longer than 200 nt. lncRNAs are less conserved across species and expressed at a relatively lower level. The expression patterns of lncRNAs are more cell-type-specific than protein-coding genes. Currently, there are 8359 lncRNA genes annotated in Mouse GENCODE version M6 and 15,931 in Human GENCODE version 23. The number of lncRNA genes is still steadily increasing. Many lncRNAs have been shown to play crucial roles in regulating the expression of protein-coding genes during various biological processes. Particularly, lnRNAs can function as regulators during development and cell differentiation. Herein, we discussed the regulated expression and the functions of lncRNAs, as well as the underlying molecular mechanisms. Specifically, we highlighted the importance of lnRNAs in the central nervous system, and their regulatory roles during neural cell-fate determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.

    Article  CAS  PubMed  Google Scholar 

  2. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Article  CAS  PubMed  Google Scholar 

  3. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88.

    Article  CAS  PubMed  Google Scholar 

  5. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699–712.

    Article  CAS  PubMed  Google Scholar 

  6. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol. 2010;28(5):503–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Khorkova O, Myers AJ, Hsiao J, Wahlestedt C. Natural antisense transcripts. Hum Mol Genet. 2014;23(R1):R54–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA. 2008;105(2):716–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493(7431):231–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(6961):917–25.

    Article  CAS  PubMed  Google Scholar 

  12. Morris JA, Royall JJ, Bertagnolli D, Boe AF, Burnell JJ, Byrnes EJ, et al. Divergent and nonuniform gene expression patterns in mouse brain. Proc Natl Acad Sci USA. 2010;107(44):19049–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9(1):3–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76.

    Article  CAS  PubMed  Google Scholar 

  16. Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 2011;41(2):308–17.

    Article  CAS  PubMed  Google Scholar 

  17. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, et al. Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol. 2014;10(3):e1003517.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis. 2012;46(2):245–54.

    Article  CAS  PubMed  Google Scholar 

  19. Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS ONE. 2011;6(9):e23356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63.

    Article  CAS  PubMed  Google Scholar 

  21. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8.

    Article  CAS  PubMed  Google Scholar 

  22. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563–73.

    Article  PubMed  Google Scholar 

  23. Wu JQ, Du J, Rozowsky J, Zhang Z, Urban AE, Euskirchen G, et al. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol. 2008;9(1):R3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Wu JQ, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, et al. Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA. 2010;107(11):5254–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rozowsky J, Wu J, Lian Z, Nagalakshmi U, Korbel JO, Kapranov P, et al. Novel transcribed regions in the human genome. Cold Spring Harb Symp Quant Biol. 2006;71:111–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, et al. Global identification of human transcribed sequences with genome tiling arrays. Science. 2004;306(5705):2242–6.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci Off J Soc Neurosci. 2014;34(36):11929–47.

    Article  CAS  Google Scholar 

  28. Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet. 2014;15(6):423–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sun J, Lin Y, Wu J. Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS ONE. 2013;8(10):e75750.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65(6):1140–51.

    Article  CAS  PubMed  Google Scholar 

  31. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 2013;20(7):908–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet. 2012;8(11):e1003078.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, et al. Regulation of lncRNA expression. Cell Mol Biol Lett. 2014;19(4):561–75.

    Article  CAS  PubMed  Google Scholar 

  34. Geisler S, Lojek L, Khalil AM, Baker KE, Coller J. Decapping of long noncoding RNAs regulates inducible genes. Mol Cell. 2012;45(3):279–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482(7385):339–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 2004;116(4):499–509.

    Article  CAS  PubMed  Google Scholar 

  39. Sheik Mohamed MJ, Gaughwin PM, Lim B, Robson P, Lipovich L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA. 2010;16(2):324–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, et al. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 2013;32(21):2833–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30(47):4750–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, et al. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res. 2010;34(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  45. Amort T, Souliere MF, Wille A, Jia XY, Fiegl H, Worle H, et al. Long non-coding RNAs as targets for cytosine methylation. RNA Biol. 2013;10(6):1003–8.

    Article  PubMed  CAS  Google Scholar 

  46. Lai F, Shiekhattar R. Where long noncoding RNAs meet DNA methylation. Cell Res. 2014;24(3):263–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 2013;49(6):1083–96.

    Article  CAS  PubMed  Google Scholar 

  48. Yang H, Zhong Y, Xie H, Lai X, Xu M, Nie Y, et al. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol. 2013;85(12):1761–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wu SC, Kallin EM, Zhang Y. Role of H3K27 methylation in the regulation of lncRNA expression. Cell Res. 2010;20(10):1109–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322(5902):750–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Zheng GX, Do BT, Webster DE, Khavari PA, Chang HY. Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs. Nat Struct Mol Biol. 2014;21(7):585–90.

    Article  CAS  PubMed  Google Scholar 

  52. Leucci E, Patella F, Waage J, Holmstrom K, Lindow M, Porse B, et al. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep. 2013;3:2535.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Chiyomaru T, Fukuhara S, Saini S, Majid S, Deng G, Shahryari V, et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem. 2014;289(18):12550–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol. 2007;14(2):103–5.

    Article  CAS  PubMed  Google Scholar 

  56. van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 2010;8(5):e1000371.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Zhu JG, Shen YH, Liu HL, Liu M, Shen YQ, Kong XQ, et al. Long noncoding RNAs expression profile of the developing mouse heart. J Cell Biochem. 2014;115(5):910–8.

    Article  CAS  PubMed  Google Scholar 

  58. Amaral PP, Mattick JS. Noncoding RNA in development. Mamm Genome. 2008;19(7–8):454–92.

    Article  CAS  PubMed  Google Scholar 

  59. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  62. Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007;17(5):556–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147(7):1537–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Marques AC, Ponting CP. Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol. 2009;10(11):R124.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Ashe HL, Monks J, Wijgerde M, Fraser P, Proudfoot NJ. Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev. 1997;11(19):2494–509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007;130(1):77–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454(7200):126–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20(11):1470–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):ra8.

    PubMed Central  PubMed  Google Scholar 

  70. Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol. 2004;11(9):822–9.

    Article  CAS  PubMed  Google Scholar 

  71. Espinoza CA, Goodrich JA, Kugel JF. Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA. 2007;13(4):583–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet. 2009;5(4):e1000459.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature. 1996;379(6561):131–7.

    Article  CAS  PubMed  Google Scholar 

  75. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129(7):1311–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW, Wutz A, et al. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet. 2000;25(1):19–21.

    Article  CAS  PubMed  Google Scholar 

  78. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20.

    Article  CAS  PubMed  Google Scholar 

  79. Korostowski L, Sedlak N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 2012;8(9):e1002956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development. 2010;137(15):2493–9.

    Article  CAS  PubMed  Google Scholar 

  81. Mohammad F, Pandey RR, Nagano T, Chakalova L, Mondal T, Fraser P, et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol. 2008;28(11):3713–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32(2):232–46.

    Article  CAS  PubMed  Google Scholar 

  83. Mohammad F, Pandey GK, Mondal T, Enroth S, Redrup L, Gyllensten U, et al. Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development. 2012;139(15):2792–803.

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25(1):69–80.

    Article  CAS  PubMed  Google Scholar 

  85. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science. 2005;309(5740):1570–3.

    Article  CAS  PubMed  Google Scholar 

  86. Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science. 2010;329(5992):643–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ayoub AE, Oh S, Xie Y, Leng J, Cotney J, Dominguez MH, et al. Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci USA. 2011;108(36):14950–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Aprea J, Prenninger S, Dori M, Ghosh T, Monasor LS, Wessendorf E, et al. Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO J. 2013;32(24):3145–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Lv J, Cui W, Liu H, He H, Xiu Y, Guo J, et al. Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS ONE. 2013;8(8):e71152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS, et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 2010;11:14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Johnson R, Teh CH, Jia H, Vanisri RR, Pandey T, Lu ZH, et al. Regulation of neural macroRNAs by the transcriptional repressor REST. RNA. 2009;15(1):85–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Bouchard M, Grote D, Craven SE, Sun Q, Steinlein P, Busslinger M. Identification of Pax2-regulated genes by expression profiling of the mid-hindbrain organizer region. Development. 2005;132(11):2633–43.

    Article  CAS  PubMed  Google Scholar 

  93. Ng SY, Bogu GK, Soh BS, Stanton LW. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell. 2013;51(3):349–59.

    Article  CAS  PubMed  Google Scholar 

  94. Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, et al. Sequential phases of cortical specification involve Neurogenin-dependent and-independent pathways. EMBO J. 2004;23(14):2892–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Onoguchi M, Hirabayashi Y, Koseki H, Gotoh Y. A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. Proc Natl Acad Sci USA. 2012;109(42):16939–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, et al. Generalized potential of adult neural stem cells. Science. 2000;288(5471):1660–3.

    Article  CAS  PubMed  Google Scholar 

  97. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146(1):18–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Kornblum HI. Introduction to neural stem cells. Stroke. 2007;38(2 Suppl):810–6.

    Article  PubMed  Google Scholar 

  99. Ugoya SO, Tu J. Bench to bedside of neural stem cell in traumatic brain injury. Stem Cells Int. 2012;2012:141624.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Miljan EA, Sinden JD. Stem cell treatment of ischemic brain injury. Curr Opin Mol Ther. 2009;11(4):394–403.

    CAS  PubMed  Google Scholar 

  101. Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell. 2013;12(5):616–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development. 2001;128(14):2723–33.

    CAS  PubMed  Google Scholar 

  103. Tochitani S, Hayashizaki Y. Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochem Biophys Res Commun. 2008;372(4):691–6.

    Article  CAS  PubMed  Google Scholar 

  104. Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci. 2009;12(8):1020–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Shahryari A, Rafiee MR, Fouani Y, Oliae NA, Samaei NM, Shafiee M, et al. Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma. Stem Cells. 2014;32(1):126–34.

    Article  CAS  PubMed  Google Scholar 

  106. Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA. 2009;15(11):2013–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M, Nakagawa S. Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells. 2011;16(5):479–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Young TL, Matsuda T, Cepko CL. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 2005;15(6):501–12.

    Article  CAS  PubMed  Google Scholar 

  109. Zhu CC, Dyer MA, Uchikawa M, Kondoh H, Lagutin OV, Oliver G. Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development. 2002;129(12):2835–49.

    CAS  PubMed  Google Scholar 

  110. Rapicavoli NA, Poth EM, Zhu H, Blackshaw S. The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev. 2011;6:32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz CC, et al. The long noncoding RNA pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015;16(4):439–47.

    Article  CAS  PubMed  Google Scholar 

  113. Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, et al. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 2014;33(4):296–311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, et al. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife. 2014;3:e04530.

    Article  PubMed  Google Scholar 

  115. Anderson SA, Eisenstat DD, Shi L, Rubenstein JL. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997;278(5337):474–6.

    Article  CAS  PubMed  Google Scholar 

  116. Anderson SA, Qiu M, Bulfone A, Eisenstat DD, Meneses J, Pedersen R, et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron. 1997;19(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  117. Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci. 2005;8(8):1059–68.

    Article  CAS  PubMed  Google Scholar 

  118. Wang Y, Dye CA, Sohal V, Long JE, Estrada RC, Roztocil T, et al. Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci. 2010;30(15):5334–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Zerucha T, Stuhmer T, Hatch G, Park BK, Long Q, Yu G, et al. A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. J Neurosci. 2000;20(2):709–21.

    CAS  PubMed  Google Scholar 

  120. Cavallaro M, Mariani J, Lancini C, Latorre E, Caccia R, Gullo F, et al. Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development. 2008;135(3):541–57.

    Article  CAS  PubMed  Google Scholar 

  121. Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, et al. Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci. 2009;12(10):1248–56.

    Article  CAS  PubMed  Google Scholar 

  122. Askarian-Amiri ME, Seyfoddin V, Smart CE, Wang J, Kim JE, Hansji H, et al. Emerging role of long non-coding RNA SOX2OT in SOX2 regulation in breast cancer. PLoS ONE. 2014;9(7):e102140.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Uhde CW, Vives J, Jaeger I, Li M. Rmst is a novel marker for the mouse ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS ONE. 2010;5(1):e8641.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Yang Z, Ming XF. mTOR signalling: the molecular interface connecting metabolic stress, aging and cardiovascular diseases. Obes Rev. 2012;13(Suppl 2):58–68.

    Article  CAS  PubMed  Google Scholar 

  125. Huang Z, Wu Q, Guryanova OA, Cheng L, Shou W, Rich JN, et al. Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat Cell Biol. 2011;13(2):142–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell. 2005;121(4):645–57.

    Article  CAS  PubMed  Google Scholar 

  127. Rapicavoli NA, Poth EM, Blackshaw S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol. 2010;10:49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci. 2007;120(Pt 15):2498–506.

    Article  CAS  PubMed  Google Scholar 

  129. Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongelard F, Hans F, et al. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J. 2006;25(8):1669–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Dempsey LA, Sun H, Hanakahi LA, Maizels N. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D, A role for G-G pairing in immunoglobulin switch recombination. J Biol Chem. 1999;274(2):1066–71.

    Article  CAS  PubMed  Google Scholar 

  131. Yano M, Okano HJ, Okano H. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J Biol Chem. 2005;280(13):12690–9.

    Article  CAS  PubMed  Google Scholar 

  132. Zheng S, Gray EE, Chawla G, Porse BT, O’Dell TJ, Black DL. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat Neurosci. 2012;15(3):381–8 (S1).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol. 2012;47(4):360–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Takayama K, Horie-Inoue K, Katayama S, Suzuki T, Tsutsumi S, Ikeda K, et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J. 2013;32(12):1665–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, et al. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet. 2009;5(6):e1000511.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Eva Zsigmond for reading and editing our manuscript. JQW, XD, and NRM are supported by grants from the National Institutes of Health R01 NS088353 and R00 HL093213, the Staman Ogilvie Fund—Memorial Hermann Foundation, Mission Connect—a program of the TIRR Foundation, the Senator Lloyd & B. A. Bentsen Center for Stroke Research, UTHealth BRAIN Initiative and CTSA UL1 TR000371, and a grant from the University of Texas System Neuroscience and Neurotechnology Research Institute (Grant #362469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dong, X., Muppani, N.R., Wu, J. (2016). Long Noncoding RNAs: Critical Regulators for Cell Lineage Commitment in the Central Nervous System. In: Wu, J. (eds) Transcriptomics and Gene Regulation . Translational Bioinformatics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7450-5_3

Download citation

Publish with us

Policies and ethics