The Taphonomy and Paleoecology of Korsi Dora Vertebrate Locality 1, Woranso-Mille Study Area, Ethiopia

  • Denise F. SuEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Korsi Dora Vertebrate Locality 1 (KSD-VP-1), located in the Woranso-Mille paleontological study area in Ethiopia, records one of the least-sampled temporal periods of Australopithecus and is one of the few to sample the earlier period of the known time range of Au. afarensis. It has yielded one of the most complete skeletons of Au. afarensis known thus far. In this paper, the taphonomy and paleoenvironment of KSD-VP-1 are explored through the collected faunal specimens. In addition to descriptive accounts of the surface modifications on the bones, data on several taphonomic factors were also collected and analyzed, the results of which suggest that the KSD-VP-1 faunal assemblage is autochthonous and that there was minimal transport and disturbance of bones. The focus of the paleoenvironmental analysis is the use of the presence and relative abundances of indicator taxa along with other lines of evidence, such as ruminant dietary adaptation and geology. The combined evidence suggests that the paleohabitat at KSD-VP-1 was likely medium to dense woodland with some open areas of grassland or shrubland distal to the locality.


KSD-VP-1/1 Taphonomy Paleoenvironment Indicator species 



I am grateful to Y. Haile-Selassie for inviting me to study the taphonomy and paleoecology of KSD-VP-1 and to the members of the Woranso-Mille Paleontological project who collected the fossil material analyzed in this study. I thank the Authority for Research and Conservation of Cultural Heritage and the National Museum of Ethiopia of the Ministry of Culture and Tourism for permission to study the fossil material under their care. The Afar Regional Government, its local administrative units, and the Afar people of the Mille District are thanked for facilitating and participating in the fieldwork that resulted in the recovery of the material discussed here. Thanks to S. Curran, K. Reed, and an anonymous reviewer for helpful comments. Field research was supported by Grants BCS-0234320, BCS-0542037, and BCS-0321893 from the National Science Foundation and by the Leakey Foundation, the Wenner-Gren Foundation, and the National Geographic Society. Laboratory research for this study was supported by the Leakey Foundation.


  1. Alemseged, Z. (2003). An integrated approach to taphonomy and faunal change in the Shungura Formation (Ethiopia) and its implication for hominid evolution. Journal of Human Evolution, 44, 451–478.Google Scholar
  2. Alemseged, Z., Wynn, J. G., Kimbel, W. H., Reed, D., Geraads, D., & Bobe, R. (2005). A new hominin from the basal member of the Hadar Formation, Dikika, Ethiopia, and its geological context. Journal of Human Evolution, 49, 499–514.CrossRefGoogle Scholar
  3. Alemseged, Z., Spoor, F., Kimbel, W. H., Bobe, R., Geraads, D., Reed, D., & Wynn, J. G. (2006). A juvenile early hominin skeleton from Dikika, Ethiopia. Nature, 443, 296–301.CrossRefGoogle Scholar
  4. Alemseged, Z., Bobe, R., & Geraads, D. (2007). Comparability of fossil data and its significance for the interpretation of hominin environments. In A. K. Berhrensmeyer, Z. Alemseged, & R. Bobe (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 159–181). Dordrecht: Springer.CrossRefGoogle Scholar
  5. Bedaso, Z. K., Wynn, J. G., Alemseged, Z., & Geraads, D. (2013). Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: Implication for Australopithecus afarensis habitat and food resources. Journal of Human Evolution, 64, 21–38.CrossRefGoogle Scholar
  6. Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.Google Scholar
  7. Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.Google Scholar
  8. Behrensmeyer, A.K. & Reed, K.E. (2013). Chapter 4 Reconstructing the habitats of australopithecus: Paleoenvironments, site taphonomy, and faunas. The Paleobiology of Australopithecus (pp. 41–60). Dordrecht, Heidelberg, London, New York: Springer.Google Scholar
  9. Bishop, L. C., Plummer, T. W., Hertel, F., & Kovarovic, K. (2011). Chapter 17 Paleoenvironments of Laetoli, Tanzania as determined by antelope habitat preferences. In K. E. Reed, J. G. Fleagle, & R. E. Leakey (Eds.), Paleontology and geology of laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 355–366). Dordrecht: Springer.Google Scholar
  10. Bobe, R. (1997). Hominid environments in the Pliocene: An analysis of fossil mammals from the Omo Valley, Ethiopia. Ph.D., University of Washington.Google Scholar
  11. Bobe, R., & Eck, G. G. (2001). Responses of African bovids to Pliocene climatic change. Paleobiology, 27, 1–47.CrossRefGoogle Scholar
  12. Bobe, R., Behrensmeyer, A. K., & Chapman, R. E. (2002). Faunal change, environmental variability and late Pliocene hominin evolution. Journal of Human Evolution, 42, 475–497.CrossRefGoogle Scholar
  13. Bobe, R., Behrensmeyer, A. K., & Eck, G. G. (2007). Patterns of abundance and diversity in late Cenozoic bovids from the Turkana and Hadar Basins, Kenya and Ethiopia. In A. K. Behrensmeyer, Z. Alemseged, & R. Bobe (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 129–157). Dordrecht: Springer.CrossRefGoogle Scholar
  14. Bonnefille, R., & DeChamps, R. (1983). Data on Fossil Flora. In J. de Heinzelin (Ed.), The Omo Group: Archives of the International Omo Research Expedition, Annales, S. 8, Sciences Geologiques (pp. 191–207). Tervuren: Musée de l’Afrique Centrale.Google Scholar
  15. Bonnefille, R., Potts, R., Chalié, F., Jolly, D., & Peyron, O. (2004). High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academy of Science, 101, 12125–12129.CrossRefGoogle Scholar
  16. Brain, C. K. (1967). Bone weathering and the problem of bone pseudo-tools. South African Journal of Science, 63, 97–99.Google Scholar
  17. Campisano, C. J., & Feibel, C. S. (2008). Depositional environments and stratigraphic summary of the Pliocene Hadar formation at Hadar, Afar depression, Ethiopia. Geological Society of America Special Papers, 446, 179–201.Google Scholar
  18. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.CrossRefGoogle Scholar
  19. Cerling, T. E., Levin, N. E., Quade, J., Wynn, J. G., Fox, D. L., & Kingston, J. D., et al. (2010). Comment on the paleoenvironment of Ardipithecus ramidus. Science, 328, 1105.Google Scholar
  20. Cerling, T. E., Manthi, F., Mbua, E., Leakey, L., Leakey, M., & Leakey, R., et al. (2013). Stable Isotope-based diet reconstructions of Turkana Basin hominins. Proceedings of the National Academy of Sciences U S A, 110, 10501–10506.Google Scholar
  21. Ditchfield, P., & Harrison, T. (2011). Chapter 3 sedimentology, lithostratigraphy and depositional history of the Laetoli Area. In T. Harrison (Ed.), Paleontology and geology of laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 47–76). Dordrecht: Springer.Google Scholar
  22. Estes, R. D. (1991). The behavior guide to african mammals: Including hoofed mammals, carnivores, primates. Berkeley: University of California Press.Google Scholar
  23. Fleagle, J. G., Rasmussen, D. T., Yirga, S., Bown, T. M., & Grine, F. E. (1991). New hominid fossils from Fejej, southern Ethiopia. Journal of Human Evolution, 21, 145–152.CrossRefGoogle Scholar
  24. Frison, G. C., & Todd, L. C. (1986). The colby mammoth site: Taphonomy and archaeology of a clovis kill in northern Wyoming. Albuquerque: University of New Mexico Press.Google Scholar
  25. Gagnon, M., & Chew, A. E. (2000). Dietary preferences in extant African Bovidae. Journal of Mammalogy, 81, 490–511.CrossRefGoogle Scholar
  26. Gentry, A. W. (1978). Bovidae. In V. J. Maglio & H. B. S. Cooke (Eds.), Evolution of African mammals (pp. 540–572). Cambridge: Harvard University Press.Google Scholar
  27. Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaatari, S. (2006). Molar microwear in Praeanthropus afarensis: Evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution, 51, 297–319.CrossRefGoogle Scholar
  28. Haile-Selassie, Y., Latimer, B. M., Alene, M., Deino, A. L., Gibert, L., & Melillo, S. M., et al. (2010). An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia. Proceedings of the National Academy of Sciences U S A, 107, 12121–12126.Google Scholar
  29. Harris, J. M., & Leakey, M. G. (Eds.). (2003). Geology and vertebrate paleontology of the early pliocene site of Kanapoi, northern Kenya. Los Angeles: Natural History Museum of Los Angeles County.Google Scholar
  30. Harrison, T. (2011). Laetoli Revisited: Renewed Paleontological and Geological Investigations at Localities on the Eyasi Plateau in Northern Tanzania. In T. Harrison (Ed.), Paleontology and geology of laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 1–15). Dordrecht: Springer Press.Google Scholar
  31. Hill, A. P. (1980). Early postmortem damage to the remains of some contemporary East African mammals. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 131–152). Chicago: The University of Chicago Press.Google Scholar
  32. Kaiser, T. M. (2011). Feeding ecology and niche partitioning of the Laetoli ungulate faunas. In T. Harrison (Ed.), Paleontology and geology of laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 329–354). Dordrecht: Springer.Google Scholar
  33. Kappelman, J., Swisher III, C. C., Fleagle, J. G., Yirga, S., Bown, T. M., & Feseha, M. (1996). Age of Australopithecus afarensis from Fejej, Ethiopia. Journal of Human Evolution, 30, 139–146.CrossRefGoogle Scholar
  34. Kimbel, W. H., & Delezene, L. K. (2009). “Lucy” redux: A review of research on Australopithecus afarensis. American Journal of Physical Anthropology, 140(Suppl. 49), 2–48.CrossRefGoogle Scholar
  35. Kimbel, W.H., Rak, Y., & Johanson, D.C. (2004). The skull of Australopithecus afarensis Oxford: Oxford University Press.Google Scholar
  36. Kingdon, J. (1974). East African mammals: An atlas of evolution in Africa, volume IIIC (Bovids). Chicago: The University of Chicago Press.Google Scholar
  37. Kingdon, J. (1997). The Kingdon field guide to African mammals. San Diego: Academic Press.Google Scholar
  38. Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.CrossRefGoogle Scholar
  39. Korth, W. W. (1979). Taphonomy of microvertebrate fossil assemblages. Annals of the Carnegie Museum, 48, 235–285.Google Scholar
  40. Kovarovic, K., & Andrews, P. (2007). Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution, 52, 663–680.CrossRefGoogle Scholar
  41. Kovarovic, K., & Andrews, P. (2011). Chapter 18 Environmental change within the Laetoli fossiliferous sequence: Vegetation catenas and bovid ecomorphology. In T. Harrison (Ed.), Paleontology and geology of laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 367–380). Dordrecht: Springer.Google Scholar
  42. Leakey, M. G., Feibel, C. S., McDougall, I., & Walker, A. (1995). New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature, 376, 565–571.CrossRefGoogle Scholar
  43. Leakey, M. G., & Harris, J. M. (2001). Lothagam: Its significance and contributions. In M. G. Leakey & J. M. Harris (Eds.), Lothagam: The dawn of humanity in eastern Africa (pp. 625–660). New York: Columbia University Press.Google Scholar
  44. Levin, N.E., Haile-Selassie, Y., Frost, S.R., & Saylor, B.Z. (2015). Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proceedings of the National Academy of Sciences, 112, 12304–12309.Google Scholar
  45. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  46. Lyman, R. L., & Fox, G. L. (1989). A critical evaluation of bone weathering as an indication of bone assemblage formation. Journal of Archaeological Science, 16, 293–317.CrossRefGoogle Scholar
  47. Njau, J. K., & Blumenschine, R. J. (2006). A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania. Journal of Human Evolution, 50, 142–162.CrossRefGoogle Scholar
  48. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.CrossRefGoogle Scholar
  49. Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743–768.CrossRefGoogle Scholar
  50. Saylor, B. Z., Alene, M., Deino, A., Gibert, L., Haile-Selassie, Y., Melillo, S., & Scott, G. (2016). The geologic context of Korsi Dora and the partial skeleton of KSD-VP-1/1. In Y. Haile-Selassie & D. F. Su (Eds.), The postcranial anatomy of Australopithecus afarensis: New insights from KSD-VP-1/1 (pp. 13–23). Dordrecht: Springer.Google Scholar
  51. Shipman, P., & Harris, J. M. (1988). Habitat preference and paleoecology of Australopithecus boisei in Eastern Africa. In F. E. Grine (Ed.), Evolutionary history of the “robust” australopithecines (pp. 343–381). New York: Aldine de Gruyter.Google Scholar
  52. Shipman, P., & Rose, J. J. (1988). Bone tools: An experimental approach. In S.L. Olsen (Ed.), Scanning electron microscopy in archaeology (pp. 303–335). Oxford: British Archaeological Reports International Series.Google Scholar
  53. Sponheimer, M., Reed, K. E., & Lee-Thorp, J. A. (1999). Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: A case study from the Makapansgat Limeworks hominin locality. Journal of Human Evolution, 36, 705–718.CrossRefGoogle Scholar
  54. Sponheimer, M., Lee-Thorp, J. A., deRuiter, D. J., Smith, J. M., van der Merwe, N. J., & Reed, K. E., et al. (2003). Diets of southern African Bovidae: Stable isotope evidence. Journal of Mammalogy, 84, 471–479.Google Scholar
  55. Su, D. F. (2011). Large Mammal Evidence for the Paleoenvironment of the Upper Laetolil and Upper Ndolanya Beds of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 381–392). Dordrecht: Springer.Google Scholar
  56. Su, D. F., & Harrison, T. (2008). Ecological implications of the relative rarity of fossil hominins at Laetoli. Journal of Human Evolution, 55, 672–681.CrossRefGoogle Scholar
  57. Su, D. F., Ambrose, S. H., Degusta, D., & Haile-Selassie, Y. (2009). Paleoenvironment. In Y. Haile-Selassie & G. WoldeGabriel (Eds.), Ardipithecus kadabba: Late Miocene evidence from the Middle Awash, Ethiopia. Berkeley: University of California Press.Google Scholar
  58. Suwa, G., White, T. D., & Howell, F. C. (1996). Mandibular postcanine dentition from the Shungura Formation, Ethiopia: Crown morphology, taxonomic allocations, and Plio-Pleistocene hominid evolution. American Journal of Physical Anthropology, 101, 247–282.CrossRefGoogle Scholar
  59. Ungar, P. S., Scott, R. S., Grine, F. E., & Teaford, M. F. (2010). Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis. Philosophical Transactions of the Royal Society of London, B, Biological Sciences, 365, 3345–3354.CrossRefGoogle Scholar
  60. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Rocky Mountain Geology, 8, 1–69.Google Scholar
  61. Vrba, E. (1980). The significance of bovid remains as indicators of environment and prediction patterns. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making (pp. 247–271). Chicago: University of Chicago Press.Google Scholar
  62. Wesselman, H. B. (1985). Fossil micromammals as indicators of climatic change about 2.4 Myr ago in the Omo Valley. Ethiopia. South African journal of science, 81, 260–261.Google Scholar
  63. Western, D. (1973). The structure, dynamics and changes of the Amboseli ecosystem. Ph.D. dissertation, University of Nairobi, Nairobi.Google Scholar
  64. White, T. D., Suwa, G., & Asfaw, B. (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature, 375, 306–312.CrossRefGoogle Scholar
  65. White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., & WoldeGabriel, G. (2009a). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326, 64–86.CrossRefGoogle Scholar
  66. White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., & Bernor, R. L., et al. (2009b). Macrovertebrate Paleontology and the Pliocene Habitat of Ardipithecus ramidus. Science, 326, 67, 87–93.Google Scholar
  67. Woldegabriel, G., White, T. D., Suwa, G., Renne, P., Deheinzelin, J., & Hart, W. K., et al. (1994). Ecological and Temporal Placement of Early Pliocene Hominids at Aramis, Ethiopia. Nature, 371, 330–333.Google Scholar
  68. Wynn, J. G. (2000). Paleosols, stable carbon isotopes, and paleoenvironmental interpretation of Kanapoi, Northern Kenya. Journal of Human Evolution, 39, 411–432.CrossRefGoogle Scholar
  69. Wynn, J. G., Alemseged, Z., Bobe, R., Geraads, D., Reed, D., & Roman, D. C. (2006). Geological and palaeontological context of a Pliocene juvenile hominin at Dikika, Ethiopia. Nature, 443, 332–336.CrossRefGoogle Scholar
  70. Wynn, J. G., Sponheimer, M., Kimbel, W. H., Alemseged, Z., Reed, K., & Bedaso, Z. K., et al. (2013). Diet of Australopithecus afarensis from the Pliocene Hadar Formation, Ethiopia. Proceedings of the National Academy of Sciences USA, 110, 10495–10500.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Paleobotany and Paleoecology, Cleveland Museum of Natural HistoryClevelandUSA

Personalised recommendations