Summary: Milestones in the Evolution of South American Metatherians

Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


We summarize the configuration of plates, geographical barriers, and possible dispersal events during the Late Cretaceous–Cenozoic between North and South America, the Caribbean, Antarctica, and Australia. The arrival of metatherians in South America was a Late Cretaceous event, and probably a Maastrichtian one. There are few doubts that the first metatherians in this continent arrived from North America. We suggest that not only eutherian mammals but also metatherians may have reached South America from the north in a series of successive dispersal waifs. This FABI (First American Biotic Interchange) may have replicated the successive waif dispersal mood of the late Cenozoic GABI (Great American Biotic Interchange). The initial radiation of basal South American metatherian lineages (“Ameridelphia”) may have already occurred by Late Campanian-Maastrichtian times. We also suggest that a cooling pulse happening by the Latest Cretaceous (Late Maastrichtian, ca. 68–67 Ma) may have been involved in the origin of the Australidelphia, as part of the southern (Austral Kingdom) Nothofagus biota. Four out of six faunal phases were involved in the evolution of South American metatherians: (1) Early South American (Late Cretaceous to the Late Eocene), Late South American (Early Oligocene to late Miocene), Interamerican (Plio–Pleistocene), and Hypoamerican (Holocene). The first of these phases involved the arrival and expansion of many lineages and adaptive types. The global cooling by the Eocene–Oligocene Boundary implied the extinction of many (mostly tropical) lineages, as well as the diversification of several specialized ones. The third of these faunal phases transpired during a time lapse of ecological imbalance and global cooling, while the last phase saw already much impoverished metatherian associations throughout the continent.


Metatheria Ameridelphia Australidelphia evolution Faunal phases Paleogeography 


  1. Abello MA (2007) Sistemática y bioestratigrafía de los Paucituberculata (Mammalia, Marsupialia) del Cenozoico de América del Sur. Doctoral thesis, Universidad Nacional de La PlataGoogle Scholar
  2. Bonaparte JF (1986) History of the terrestrial Cretaceous vertebrates of Gondwana. 4 Congr Arg Paleontol Bioestrat Mendoza, Actas 2:63–95Google Scholar
  3. Bonaparte JF, Van Valen LM, Kramartz A (1993) La fauna local de Punta Peligro, Paleoceno Inferior, de la Provincia del Chubut, Patagonia, Argentina. Evol Monogr 14:1–61Google Scholar
  4. Bond M, Carlini AA, Goin FJ, Legarreta L, Ortiz-Jaureguizar E, Pascual R, Uliana MA (1995) Episodes in South American land mammal evolution and sedimentation: testing their apparent concomitance in a Palaeocene succession from Central Patagonia. VI Congr Arg Paleontol Bioestrat Trelew, Actas 47–58Google Scholar
  5. Cadena EA, Bloch JI, Jaramillo CA (2012) New bothremydid turtle (Testudines, Pleurodira) from the Paleocene of Northeastern Colombia. J Paleontol 86(4):689–699CrossRefGoogle Scholar
  6. Chornogubsky L, Goin FJ (2015) A review of the molar morphology and phylogenetic affinities of Sillustania quechuense (Metatheria, Polydolopimorphia, Sillustaniidae), from the early Paleogene of Laguna Umayo, southeastern Perú. J Vert PaleontolGoogle Scholar
  7. Case JA, Goin FJ, Woodburne MO (2005) “South American” Marsupials from the Late Cretaceous of North America and the Origin of Marsupial Cohorts. J Mammal Evol 12(3/4):461–494CrossRefGoogle Scholar
  8. Clyde WC, Wilf P, Iglesias A, Slingerland RL, Barnum T, Bijl PK, Bralower TJ, Brinkhuis H, Comer EE, Huber BT, Ibañez-Mejia M, Jicha BR, Krause JM, Schueth JD, Singer BS, Raigemborn MS, Schmitz MD, Sluijs A, Zamaloa M del C (2014) New age constraints for the Salamanca Formation and lower Río Chico Group in the western San Jorge Basin, Patagonia, Argentina: Implications for K/Pg extinction recovery and land mammal age correlations. Geol Soc Am Bull 3–4:289–306Google Scholar
  9. Clemens WA (1966) Fossil mammals from the type Lance Formation, Wyoming. Part II. Univ Calif Publ Geol Sci 66:1–122Google Scholar
  10. Coria RA, González Riga B, Casadío S (2012) Un nuevo hadrosáurido (Dinosauria, Ornithopoda) de la Formación Allen, Provincia de La Pampa, Argentina. Ameghiniana 49(4):552–572CrossRefGoogle Scholar
  11. Davis BM (2007) A revision of “pediomyid” marsupials from the Late Cretaceous of North America. Acta Palaeontol Pol 52(2):217–256Google Scholar
  12. de Muizon C (1991) La fauna de mamíferos de Tiupampa (Paleoceno Inferior, Formación Santa Lucia), Bolivia. Rev Técn Yac Petrolíf Fiscales Bolivianos 12(3–4):575–624Google Scholar
  13. de Muizon C, Céspedes R (in press) The beginning of the age of therian mammals in South America: Tiupampa, a transition between Northern and Southern worlds in the basal Paleocene. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American Mammals. Springer, New YorkGoogle Scholar
  14. de Muizon C, Cifelli RL (2001) A new basal “Didelphoid” (Marsupialia, Mammalia) from the early Paleocene of Tiupampa (Bolivia). J Vertebr Paleontol 21(1):87–97CrossRefGoogle Scholar
  15. de Muizon C, Lange-Badré B (1997) Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction. Lethaia 30:353–366CrossRefGoogle Scholar
  16. de Muizon C, Cifelli RL, Cespedes Paz R (1997) The origin of borhyaenoids, South American dog-like marsupials. Nature 389:486–489CrossRefGoogle Scholar
  17. Forasiepi AM (2009) Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr Mus Arg Cs Nat “B Rivadavia” NS 6:1–174Google Scholar
  18. Forasiepi AM, Martinelli AG, Goin FJ (2007) Revisión taxonómica de Parahyaenodon argentinus Ameghino y sus implicancias en el conocimiento de los grandes mamíferos carnívoros del Mio-Plioceno de América de Sur. Ameghiniana 44(1):143–159Google Scholar
  19. Gallagher SJ, Wagstaff BE, Baird JG, Wallace MW, Li CL (2008) Southern high latitude climate variability in the Late Cretaceous greenhouse world. Global Planet Change 60:351–364CrossRefGoogle Scholar
  20. Gayet M, Rage J-C, Sempere Th, Gagnier P-Y (1992) Modalités des échanges des vertébrés continentaux entre l’Amérique du Nord et l’Amérique du Sud au Crétacé supérieur et au Paléocène. Bull Soc géol France 163:781–791Google Scholar
  21. Gayet M, Marshall LG, Sempere T, Meunier FJ, Cappetta H, Rage JC (2001) Middle Maastrichtian vertebrates (fishes, amphibians, dinosaurs and other reptiles, mammals) from Pajcha Pata (Bolivia). Biostratigraphic, palaeoecologic and palaeobiogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 169:39–68CrossRefGoogle Scholar
  22. Gelfo JN, Goin FJ, Woodburne MO, de Muizon C (2009) Biochronological Relationships of the Earliest South American Paleogene Mammalian Faunas. Palaeontology 52(1):251–269CrossRefGoogle Scholar
  23. Goin FJ (2006) A review of the Caroloameghiniidae, Paleogene South American “primate-like” marsupials (PDidelphimorphia, Peradectoidea). In: Kalthoff D, Martin T, Möors T (eds) Festband für Herrn Professor Wighart v. Koenigswald anlässlich seines 65. Geburtstages. Palaeontographica Abt. A 278. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  24. Goin FJ, Candela AM, Bond M, Pascual R, Escribano V (1998) Una nueva “comadreja” (Mammalia, Marsupialia, Polydolopimorphia) del Paleoceno de Patagonia, Argentina. In: Paleógeno de América del Sur y de la Península Antártica. Spec Pub 5, Asociacion Paleontológica Argentina, Buenos AiresGoogle Scholar
  25. Goin FJ, Candela AM, de Muizon C (2003) The affinities of Roberthoffstetteria nationalgeographica (Marsupialia) and the Origin of the Polydolopine Molar Pattern. J Vertebr Paleontol 23(4):869–876CrossRefGoogle Scholar
  26. Goin FJ, Pascual R, Tejedor MF, Gelfo JN, Woodburne MO, Case JA, Reguero M, Bond M, Cione AL, Udrizar Sauthier D, Balarino L, Scasso RA, Medina FA, Ubaldón MC (2006) The earliest Tertiary therian mammal from South America. J Vertebr Paleontol 26(2):505–510CrossRefGoogle Scholar
  27. Goin FJ, Zimicz AN, Reguero MA, Santillana S, Marenssi SA, Moly JJ (2007) New Mammal from the Eocene of Antarctica, and the origins of the Microbiotheria. Rev Asoc Geol Arg 62:597–603Google Scholar
  28. Goin FJ, Candela AM, Abello MA, Oliveira EV (2009) Earliest South American Paucituberculatans and their significance in the understanding of “pseudodiprotodont” marsupial radiations. Zool J Linnean Soc 155:867–884CrossRefGoogle Scholar
  29. Goin FJ, Abello MA, Chornogubsky L (2010) Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grande Coupure. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, New YorkGoogle Scholar
  30. Goin FJ, Gelfo JN, Chornogubsky L, Woodburne MO, Martin T (2012) Origins, Radiations, and Distribution of South American Mammals: from Greenhouse to Icehouse Worlds. In: Patterson BD, Costa LP (eds) Bones, clones, and biomes: an 80-million year history of Recent Neotropical mammals Univ Chicago Press, ChicagoGoogle Scholar
  31. Goin FJ, Zimicz AN, Forasiepi AM, Chornogubsky L, Abello MA, Oliveira EV (in press) The rise and Fall of South American Metatherians: contexts, adaptations, radiations, and extinctions. In Rosenberger AL, Tejedor MF (eds), Origins and evolution of Cenozoic South American Mammals. Springer, Berlin Google Scholar
  32. Horovitz T, Bloch MJ, Ladevèze S, Kurz C, Sánchez-Villagra MR (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS ONE 4(12):e8278. doi: 10.1371/journal.pone.0008278 CrossRefGoogle Scholar
  33. Jansa SA, Barker FK, Voss RS (2014) The early diversification history of didelphid marsupials: a window into South America’s “Splendid Isolation”. Evolution 68:684–695CrossRefGoogle Scholar
  34. Jaramillo CA, Bayona G, Pardo-Trujillo A, Rueda M, Torres V, Harrington GJ, Mora G (2007) The palynology of the Cerrejón formation (Upper Paleocene) of Northern Colombia. Palynology 31:153–189Google Scholar
  35. Juárez Valieri RD, Haro JH, Fiorelli LE, Calvo JO (2010) A new hadrosauroid (Dinosauria: Ornithopoda) from the Allen formation (Late Cretaceous) of Patagonia, Argentina. Rev Mus Arg Cs Nat “B Rivadavia” NS 12(2):217–231Google Scholar
  36. Kielan-Jaworowska Z, Ortiz-Jaureguizar E, Vieytes MC, Pascual R, Goin FJ (2007) First? cimolodontan multituberculate mammal from South America. Acta Palaeontol Pol 52(2):257–262Google Scholar
  37. Kirsch JAW, Lapointe F-J, Springer MS (1997) DNA-hybridisation studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280CrossRefGoogle Scholar
  38. Leanza HA, Apesteguía S, Novas FE, de la Fuente MS (2004) Cretaceous terrestrial beds from the Neuquén Basin (Argentina) and their tetrapod assemblages. Cretac Res 25:61–87CrossRefGoogle Scholar
  39. Luo ZX, Ji Q, Wible JR, Yuan CX (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302:1934–1940Google Scholar
  40. Marshall LG (1982) Systematics of the extinct South American Marsupial Family Polydolopidae. Fieldiana NS 12:1–109Google Scholar
  41. Marshall LG (1987) Systematics of Itaboraian (middle Paleocene) age “opossum-like” marsupials from the limestone quarry at São José de Itaboraí, Brazil. In: Archer M (ed) Possums and opossums: studies in evolution. R Zool Soc New South Wales, Surrey Beatty & Sons Pty Ltd, Chipping NortonGoogle Scholar
  42. Marshall LG, de Muizon C (1988) The dawn of the age of mammals in South America. Nat Geogr Res 5(3):268–661Google Scholar
  43. Marshall LG, Case JA, Woodburne MO (1990) Phylogenetic relationships of the families of marsupials. In: Genoways H (ed) Current mammalogy, vol 2. Plenum Press, New YorkGoogle Scholar
  44. Martin GM (2008) Sistemática, Distribución y Adaptaciones de los Marsupiales Patagónicos. PhD thesis, Univ Nacional de La PlataGoogle Scholar
  45. McNab BK (2005) Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev Chilena Hist Nat 78:183–198Google Scholar
  46. Meredith R, Westerman M, Case J, Springer M (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mammal Evol 15:1–36CrossRefGoogle Scholar
  47. Oliveira EV (1998) Taxonomia, filogenia e paleobiogeografia de marsupiais “poliprotodontes” do Mesopaleoceno da Bacia de Itaboraí, Rio de Janeiro, Brasil. PhD Thesis, Univ Fed Rio Grande do Sul, Porto AlegreGoogle Scholar
  48. Ortiz-Jaureguizar E (2009) Evolución de la Fauna de Mamíferos de América del Sur: Evidencias, Interrogantes e Interpretaciones. In: Dopazo H, Navarro A (eds) Evolución y Adaptación. 150 años después del Origen de las Especies. Obrapropia Eds, MadridGoogle Scholar
  49. Ortiz-Jaureguizar E, Cladera GA (2006) Paleoenvironmental evolution of southern South America during the Cenozoic. J Arid Envir 66:498–532CrossRefGoogle Scholar
  50. Ortiz-Jaureguizar E, Pascual R (2011) The tectonic setting of the Caribbean region and the K/T turnover of the South American land-mammal fauna. Bol Geol Min 122:333–344Google Scholar
  51. Rich TH, Vickers-Rich P, Flannery TF, Kear BP, Cantrill DJ, Komarower P, Kool L, Pickering D, Trusler P, Morton S, Klaveren N van, Fitzgerald EMG (2009) An Australian multituberculate and its palaeobiogeographic implications. Acta Palaeont Polonica 54:1–6Google Scholar
  52. Rougier GW, Chornogubsky L, Casadio S, Páez Arango N, Giallombardo A (2009) Mammals from the Allen Formation, Late Cretaceous, Argentina. Cretac Res 30:223–238CrossRefGoogle Scholar
  53. Simpson GG (1935) Descriptions of the oldest known South American mammals, from the Río Chico Formation. Amer Mus Novit 793:1–25Google Scholar
  54. Szalay FS (1982) A new appraisal of marsupial phylogeny and classification. In: Archer M (ed) Carnivorous Marsupials, vol 2. R Zool Soc New South Wales, SydneyGoogle Scholar
  55. Wilf P, Cúneo NR, Escapa IH, Pol D, Woodburne MO (2013) Splendid and seldom isolated: the paleobiogeography of Patagonia. Ann Rev Earth Planet Sci 41:561–603CrossRefGoogle Scholar
  56. Williamson TE, Brusatte SL, Carr TD, Weil A, Standhardt BR (2012) The phylogeny and evolution of Cretaceous-Palaeogene metatherians: cladistic analysis and description of new early Palaeocene specimens from the Nacimiento Formation. New Mexico J Syst Palaeontol 10(4):625–651CrossRefGoogle Scholar
  57. Williamson TE, Brusatte SL, Wilson GP (2014) The origin and early evolution of metatherian mammals: the Cretaceous record. ZooKeys 465:1–76. doi: 10.3897/zookeys.465.8178 CrossRefGoogle Scholar
  58. Wilson GP (2005) Mammalian faunal dynamics during the last 1.8 million years of the Cretaceous in Garfield County, Montana. J Mammal Evol 12(1–2):53–76Google Scholar
  59. Woodburne MO, Case JA (1996) Dispersal, vicariance and the late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J Mamm Evol 3(2):121–161CrossRefGoogle Scholar
  60. Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GM, Iglesias A, Zimicz AN (2014) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mammal Evol. doi:  10.1007/s10914-012-9222-1 Google Scholar
  61. Zhang ML (2011) A cladistic scenario of Southern Pacific biogeographical history based on Nothofagus dispersal and vicariance analysis. J Arid Land 3(2):104–113Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CONICET - División Paleontología VertebradosMuseo de La PlataLa PlataArgentina
  2. 2.Department of GeologyMuseum of Northern ArizonaFlagstaffUSA
  3. 3.IBIGEO (CONICET)Universidad Nacional de SaltaSaltaArgentina
  4. 4.CIEMEP (CONICET)Universidad Nacional de la Patagonia San Juan BoscoEsquelArgentina
  5. 5.CONICET - División Paleontología de VertebradosMuseo Argentino de Ciencias NaturalesBuenos AiresArgentina

Personalised recommendations