Paleobiology and Adaptations of Paleogene Metatherians

Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


Diversity, dietary, and body mass analyses suggest that the early Eocene represents the major radiation event in South America metatherian evolutionary history. During this period, representatives of all orders typical of the Paleogene reached their greatest diversity (i.e., “basal ameridelphians”; Polydolopimorphia Polydolopiformes, and Bonapartheriiformes Bonapartherioidea); frugivory was the dominant trophic niche. By the middle late Eocene occurs a functional and taxonomic turnover. Among the Polydolopimorphia, frugivore types declined and were replaced by larger-sized frugivores/folivores (Polydolopiformes) and smaller-sized granivores (Bonapartheriiformes). The Sparassodonta showed a diversity increase and occupied the large-sized hypercarnivore niches. The Eocene–Oligocene boundary constitutes another extinction and turnover event marked by the disappearance of “basal ameridelphians”, the Polydolopiformes and Bonapartheriiformes Bonapartherioidea. Lineages that survive into the Deseadan are the Sparassodonta, Paucituberculata, Microbiotheria, and Bonapartheriiformes Argyrolagoidea. Dominant trophic types were those of carnivores and granivores. Environmental factors probably modeled the Paleogene metatherian faunal dynamics in South America. Mean annual temperatures (MAT) and precipitations seem the main factors modeling the taxonomic and trophic diversity, respectively. The adaptive radiation of the early Eocene seems associated with the maximum thermal event of the late Paleocene-early Eocene. The turnover event of the late Eocene seems associated with a sharp drop in the rainfall regime. The extinction and turnover event of the Eocene–Oligocene boundary also seem associated with a strong drop in ambient temperatures. The diversity in evolution of Paleogene metatherians shows a pattern similar to that of living marsupials at the latitudinal level. For a given mean temperature, the number of species in extinct associations is very close to that of the living ones.


Metatheria South America Diversity Adaptations Diet Mastication Body mass Paleoclimates 


  1. Abello MA, Candela AM (2010) Postcranial skeleton of the Miocene marsupial Palaeothentes (Paucituberculata, Palaeothentidae): paleobiology and phylogeny. J Vert Paleontol 5:1515–1527CrossRefGoogle Scholar
  2. Argot C (2001) Functional-adaptive anatomy of the forelimb in the didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247(1):51–79CrossRefGoogle Scholar
  3. Argot C (2003) Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria) Borhyaena and Prothylacynus, from South America. Palaeontol 46:1213–1267CrossRefGoogle Scholar
  4. Argot C (2004) Evolution of South American mammalian predators (Borhyaenoidea): anatomical and palaeobiological implications. Zool J Linn Soc 140:487–521CrossRefGoogle Scholar
  5. Argot C, Babot J (2011) Postcranial morphology, functional adaptations and paleobiology of Callistoe vincei, a predaceous metatherian from the Eocene of Salta, North-western Argentina. Paleontol 54(2):447–480CrossRefGoogle Scholar
  6. Babot MJ, Powell JE, de Muizon C (2002) Callistoe vincei, a new Proborhyaenidae (Borhyaenoidea, Metatheria, Mammalia) from the Early Eocene of Argentina. Geobios 35:615–629CrossRefGoogle Scholar
  7. Barnosky AD (2001) Distinguishing the effects of the red queen and court jester on Miocene mammal evolution in the northern Rocky Mountains. J Vertebr Paleontol 21:172–185CrossRefGoogle Scholar
  8. Barreda V, Palazzesi I (2007) Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Botan Rev 73:31–50CrossRefGoogle Scholar
  9. Bellosi ES, Gonzales P (2010) Paleosols of the middle Cenozoic Sarmiento Formation, central Patagonia. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, New YorkGoogle Scholar
  10. Birney EC, Monjeau JA (2003) Latitudinal variation in South American marsupial biology. In: Menna J, Dickman C, Archer M (eds) Predators with pouches. The biology of carnivorous marsupials. Csiro Publishing, ColingwoodGoogle Scholar
  11. Bond M, Pascual R (1983) Nuevos y elocuentes restos craneanos de Proborhyaena gigantea Ameghino, 1897 (Marsupialia, Borhyaenidae, Proborhyaeninae) de la edad Deseadense. Un ejemplo de coevolución. Ameghiniana 10(1–2):47–60Google Scholar
  12. Bozinovic F, Ruiz G, Rosenmann M (2004) Energetics and torpor of a South American living fossil, the microbiotheriid Dromiciops gliroides. J Comp Physiol B 174:293–297Google Scholar
  13. Bozinovic F, Ruiz G, Cortés A, Rosenmann M (2005) Energetics, thermoregulation and torpor in the Chilean mouseopossum Thylamys elegans (Didelphidae). Rev Chilena Hist Nat 78:199–206Google Scholar
  14. Bown TM, Fleagle JG (1993) Systematics, Biostratigraphy, and dental evolution of the Palaeothentidae, later Oligocene to earlymiddle Miocene (Deseadan-Santacrucian) caenolestoid marsupials of South America. Mem Paleont Soc 29:1–76Google Scholar
  15. Butler PM (1983) Molar wear facets of early tertiary North American primates. In: Symposium of the 4 international congress of primatology, vol 3, pp 1–27Google Scholar
  16. Butler PM (1985) Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents. A multidisciplinary analysis. Plenum Press, New YorkGoogle Scholar
  17. Charnov EL (1976) Optimal foraging: attack strategy of a mantid. Am Nat 110(971):141–151CrossRefGoogle Scholar
  18. Chivers DJ, Langer P (1994) The digestive system in mammals. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Cope ED (1887) The origin of the fittest. D. Appleton & Co, New YorkGoogle Scholar
  20. Damuth J, MacFadden BJ (1990) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, CambridgeGoogle Scholar
  21. de Muizon C (1991) La fauna de mamíferos de Tiupampa (Paleoceno Inferior, Formación Santa Lucía) Bolivia. In: Suarez-Soruco R (ed) Fósiles y Facies de Bolivia, Vol. I: Vertebrados. Rev Técn Yacimientos Petrolíferos Fiscales de Bolivia 12:575–624Google Scholar
  22. de Muizon C (1998) A new carnivorous marsupial from the Paleocene of Bolivia and the problem of the marsupial monophyly. Nature 370:208–211CrossRefGoogle Scholar
  23. Dewar EW (2003) Functional diversity within the Littleton fauna (early Paleocene) Colorado: evidence from body mass, tooth structure and tooth wear. Paleobios 23(1):1–19Google Scholar
  24. Dumont ER, Strait SG, Friscia AR (2000) Abderitid marsupials from the Miocene of Patagonia: an assessment of form, function, and evolution. J Paleontol 74(6):1161–1172CrossRefGoogle Scholar
  25. Evans AR (2003) Functional dental morphology of insectivorous microchiropterans: spatial modelling and functional analysis of tooth form and the influence of tooth wear and dietary properties. PhD thesis, School of Biological Sciences, Monash UniversityGoogle Scholar
  26. Feldhamer GA (2004) Mammalogy: adaptation, diversity, and ecology. McGraw-Hill, San FranciscoGoogle Scholar
  27. Fisher DO, Owens IPF, Johnson C (2001) The ecological basis of life history variation in marsupials. Ecol 82(12):3531–3540CrossRefGoogle Scholar
  28. Freeman PW (1981) Correspondence of food habits and morphology in insectivorous bats. J Mammal 62(1):166–173CrossRefGoogle Scholar
  29. Gardner AL (2007) Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews and bats. University of Chicago Press, ChicagoGoogle Scholar
  30. Geiser F (2001) Hibernation: endotherms. In: Enciclopedia of life sciences. Wiley, ChichesterGoogle Scholar
  31. Geiser F, Ferguson C (2001) Intraspecific differences in behaviour and physiology: effects of captive breeding on patterns of torpor in feathertail gliders. J Comp Physiol B 171:569–576CrossRefGoogle Scholar
  32. Goin FJ (1991) Los Didelphoidea (Mammalia, Marsupialia, Didelphimorphia) del Cenozoico tardío de la Región Pampeana. PhD thesis, Univ Nac La PlataGoogle Scholar
  33. Goin FJ (1997) New clues for understanding Neogene marsupial radiation. In: Kay RF, Madden RH, Cifelli RL, Flynn JF (eds) Vertebrate paleontology in the neotropics. The Miocene fauna of La Venta, Colombia. Smithsonian Institution Press, WashingtonGoogle Scholar
  34. Goin FJ, Abello MA (2013) Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno temprano Edad Mamífero Colhuehuapense): Microbiotheria y Polydolopimorphia. Ameghiniana 50(I):51–78Google Scholar
  35. Goin FJ, Candela A (2004) New Paleogene Marsupials from the Amazon Basin of Eastern Perú. In: Campbell KE Jr (ed) The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Perú. Nat Hist Mus Los Angeles County, Science Series, vol 40, pp 15–60Google Scholar
  36. Goin FJ, Velázquez C, Scaglia O (1992) Orientación de las crestas cortantes en el molar tribosfénico. Sus implicancias funcionales en didelfoideos (Marsupialia) fósiles y vivientes. Rev Mus La Plata, ns, Paleontol 9(57):183–198Google Scholar
  37. Goin FJ, Woodburne MO, Case JA, Vizcaíno SF, Reguero MA (1999) New discoveries of “opossum-like” marsupials from Antartica (Seymour Island, Middle Eocene). J Mammal Evol 6(4):335–365CrossRefGoogle Scholar
  38. Goin FJ, Zimicz AN, Reguero MA, Santillana S, Marenssi SA, Moly JJ (2007) A new Mammal from the Eocene of Antarctica, and the origins of the microbiotheria. Rev Asoc Geol Arg 62(4):597–603Google Scholar
  39. Goin FJ, Candela AM, Abello MA, Oliveira EO (2009) Earliest South American Paucituberculatans and their significance in the understanding of “pseudodiprotodont” marsupial radiations. Zool J Linn Soc 155:867–884CrossRefGoogle Scholar
  40. Goin FJ, Abello MA, Chornogubsky L (2010a) Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grande Coupure. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, New YorkGoogle Scholar
  41. Goin FJ, Tejedor MF, Abello MA, Martin GM (2010b) Un nuevo microbiotérido (Mammalia, Marsupialia, Microbiotheria) de la Formación Pinturas (Mioceno temprano) de la provincia de Santa Cruz. Ameghiniana 47(1):117–122CrossRefGoogle Scholar
  42. Goin FJ, Zimicz AN, Forasiepi AM, Chornogubsky L, Abello MA (2013) The rise and fall of South American metatherians: contexts, adaptations, radiations, and extinctions. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of cenozoic South American Mammals. Vertebrate Paleobiology and Paleoanthropology Series. Springer, BerlinGoogle Scholar
  43. Gould SJ (1988) Trends as changes in variances: a new slant on progress and directionality in evolution. J Paleontol 62:319–329CrossRefGoogle Scholar
  44. Gordon CL (2003) A first look at estimating body size in dentally conservative marsupials. J Mammal Evol 10(1/2):1–21CrossRefGoogle Scholar
  45. Green B (1997) Field energetics and water flux in marsupials. In: Saunders NR, Hinds LA (eds) Marsupial biology: recent research, new perspectives. University of New South Wales Press, SydneyGoogle Scholar
  46. Haq BU, Handerbol J, Vail PR (1987) Chronology of fluctuating sea levels since the triassic. Science 235:1156–1167CrossRefGoogle Scholar
  47. Hiiemae KM (2000) Feeding in mammals. In: Schwenk K (ed) Feeding, form, function and evolution in tetrapod vertebrates. Academic Press, San DiegoGoogle Scholar
  48. Hiiemae K, Crompton AW (1985) Mastication, food transport and swallowing. In: Hildebrand M, Bramble B, Liem K, Wake D (eds) Functional vertebrate morphology. Belknapp Press-Harvard University Press, CambridgeGoogle Scholar
  49. Hinojosa LF (2005) Cambios climáticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sudamérica. Rev Chilena Hist Nat 32:95–115Google Scholar
  50. Hume ID (1999) Marsupial nutrition. Cambridge University Press, CambridgeGoogle Scholar
  51. Janis CM (1984) The use of fossil ungulate communities as indicators of climate and environment. In: Brenchley P (ed) Fossils and climate. Wiley, ChichesterGoogle Scholar
  52. Janis CM (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals; and the correlation of these factors with dietary preferences. In: Proceedings of the VIIth international symposium on dental morphology. Mem Mus nat Hist Nat 53:367–387Google Scholar
  53. Kay RF, Hylander WL (1978) The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In: Montgomery G (ed) The ecology of arboreal folivores. Smithsonian Institution Press, WashingtonGoogle Scholar
  54. Körtner G, Geiser F (1998) Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia 113:170–178CrossRefGoogle Scholar
  55. Krause DW (1982) Jaw movement, dental function, and diet in the Paelocene multituberculate Ptilodus. Paleobiol 8:265–281CrossRefGoogle Scholar
  56. Lagabrielle Y, Godderis Y, Donnadieu Y, Mallabieille J, Suarez M (2009) The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet Sci Lett 279:197–211CrossRefGoogle Scholar
  57. Lee AK, Cockburn A (1985) Evolutionary ecology of marsupials. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  58. Lucas PW (1994) Categorization to food items relevant to oral processing. In: Chivers DJ, Langer P (eds) The digestive system in mammals: food, form and function. Cambridge University Press, CambridgeGoogle Scholar
  59. Lucas PW, Luke DA (1984) Chewing it over: basic principles of food breakdown. In: Chivers DJ, Wood BA, Bilsborough A (eds) Food acquisition and processing in primates. Plenum Press, New YorkGoogle Scholar
  60. Lucas PW, Peters CR (2000) Function of postcanine tooth crown shape in mammals. In: Teadford MF, Smith MM, Ferguson MWJ (eds) Development, function and evolution of teeth. Cambridge University Press, CambridgeGoogle Scholar
  61. Lucas PW, Prinz JF, Agrawal KR, Bruce IC (2002) Food physics and oral physiology. Food Qual Prefer 13:203–213CrossRefGoogle Scholar
  62. McKinney ML (1990a) Clasifying and analysing evolutionary trends. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, LondonGoogle Scholar
  63. McKinney ML (1990b) Trends in body-size evolution. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, LondonGoogle Scholar
  64. McNab BK (1971) On the ecological significance of Bergmann’s rule. Ecology 52:845–854CrossRefGoogle Scholar
  65. McNab BK (1986) Food habits, energetics and the reproduction of marsupials. J Zool London A 208:595–614CrossRefGoogle Scholar
  66. McNab BK (2005) Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Rev Chilena Hist Nat 78:183–198Google Scholar
  67. Marshall LG (1977) A new species of Lycopsis (Borhyaenidae: Marsupialia) from the La Venta Fauna (Late Miocene) of Colombia, South America. J Paleontol 51(3):633–642Google Scholar
  68. Marshall LG (1978) Evolution of the Borhyaenidae, extinct South American predaceous marsupials. Univ California Publ Geol Sci 117:1–89Google Scholar
  69. Marshall LG (1980a) Review of the Hathlyacyninae, an extinct subfamily of South American “dog-like” marsupials. Fieldiana Geol NS 7:1–132Google Scholar
  70. Marshall LG (1980b) Systematics of the South American marsupial family Caenolestidae. Fieldiana Geol NS 5:1–145Google Scholar
  71. Marshall LG (1982a) Systematics of the South American marsupial family Microbiotheriidae. Fieldiana Geol NS 10:1–75Google Scholar
  72. Marshall LG (1982b) Systematics of the extinct South American marsupial family Polydolopidae. Fieldiana Geol NS 12:1–109Google Scholar
  73. Martin GM (2008) Sistemática, distribución y adaptaciones de los marsupiales patagónicos. PhD thesis, Univ Nac La PlataGoogle Scholar
  74. Mayr E (1963) Animal species and evolution. Belknap Press, CambridgeCrossRefGoogle Scholar
  75. Meng J, Mckenna MC (1998) Faunal turnovers of Paleogene mammals from the Mongolian Plateau. Nature 394:364–367CrossRefGoogle Scholar
  76. Palmqvist P, Martínez-Navarro B, Pérez-Claros JA, Torregrosa V, Figuerido B, Jiménez Arenas JM, Patrocinio Espigares M, Ros-Montoya S, De Renzi M (2011) The giant hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct carnivore. Quatern Int 12:1–19Google Scholar
  77. Pascual R (1980) Nuevos y singulares tipos ecológicos de marsupiales extinguidos de América del Sur (Paleoceno tardío o Eoceno temprano) del noroeste argentino. Actas 2 Congr Arg Paleontol Bioestrat 2:151–173Google Scholar
  78. Prothero DR (1994) The late Eocene-Oligocene extinctions. Ann Rev Earth Planet Sci 22:145–165CrossRefGoogle Scholar
  79. Randall D, Burggren W, French K (1997) Eckert. Fisiología animal. Mecanismos y adaptaciones. McGraw-Hill Interamericana, MadridGoogle Scholar
  80. Romero EJ (1986) Paleogene Phytogeography and Climatology of South America. Ann Missouri Bot Gard 73(2):449–461CrossRefGoogle Scholar
  81. Sanson GD (1989) Morphological adaptations of theeth to diets and feeding in the Macropodoidea. In: Grigg G, Jarman P, Hume I (eds) Kangaroos, Wallabies and Rat-kangaroos. Surrey Beatty and Sons Pty. Limited, New South WalesGoogle Scholar
  82. Sanson GD (1996) Predicting the diet of fossil mammals. In: Vickers-Rich P, Monaghan JM, Baird RF, Rich TH (eds) Vertebrate Palaeontology of Australasia. Monash University of Publishing Committee, MelbourneGoogle Scholar
  83. Schmidt-Nielsen K (1975) Scaling in biology: the consequences of size. J Exp Zool 194:287–307CrossRefGoogle Scholar
  84. Shaw G (2006) Reproduction. In: Armati PJ, Dickman CRY, Hume ID (eds) Marsupials. Cambridge University Press, CambridgeGoogle Scholar
  85. Solounias N, Teaford M, Walker A (1988) Interpreting the diet of extinct ruminants: the case of a non-browsing giraffid. Paleobiology 14(3):287–300CrossRefGoogle Scholar
  86. Spears RI, Crompton RH (1995) The mechanical significance of the occlusal geometry of great ape molars in food breakdown. J Human Evol 31:517–535CrossRefGoogle Scholar
  87. Stanley MS (1973) An explanation for Cope’s rule. Evol 27(1):1–26CrossRefGoogle Scholar
  88. Stehlin HG (1910) Remarques sur les faunules de Mammifères des couches Éocènes et Oligocènes du Bassin de Paris. Bull Soc Géol France 9:488–520Google Scholar
  89. Strait SG, Vincent JFV (1998) Primate Faunivores: physical properties of prey items. Int J Primatol 19(5):867–878CrossRefGoogle Scholar
  90. Tyndale-Biscoe CH, Renfree MB (1987) Reproductive physiology of Marsupials. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  91. Van Valkenburgh B (1988) Diversity in past and present guilds of large predatory mammals. Paleobiology 14(2):155–173CrossRefGoogle Scholar
  92. Van Valkenburgh B (1991) Iterative evolution of hipercarnivory in canids (Mammalia, Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17(4):340–362CrossRefGoogle Scholar
  93. Vrba ES (1985) Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S Afr J Sci 81:229–236Google Scholar
  94. Walker A, Hoeck HN, Pérez L (1978) Microwear of mammalian teeth as indicator of diet. Science 201(4359):908–910CrossRefGoogle Scholar
  95. Wilf P, Johnson KR, Cuneo R, Smith ME, Singer BS, Gandolfo MA (2005) Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. Am Nat 165(6):10–44CrossRefGoogle Scholar
  96. Wilf P, Little SA, Iglesias A, Zamaloa M, Gandolfo MA, Cúneo NR, Johnson KR (2009) Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. Am J Bot 96(11):2031–2047CrossRefGoogle Scholar
  97. Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GM, Iglesias A, Zimicz AN (2013) Paleogene Land Mammal Faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mamm Evol. doi: 10.1007/s10914-012-9222-1 Google Scholar
  98. Wroe S, Myers T, Seebacher F, Kear B, Gillespie A, Crowther M, Salisbury S (2003) An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Palaeobiology 29(3):403–411CrossRefGoogle Scholar
  99. Wroe S, Argot C, Dickman C (2004) On the rarity of big fierce carnivores and primacy of isolation and area: tracking large mammalian carnivore diversity on two isolated continents. Proc R Soc London (B) 271:1203–1211Google Scholar
  100. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  101. Zimicz AN (2004) Paleoecología y extinción de los marsupiales con dentición plagiaulacoide de América del Sur: un estudio basado en los cambios en el tamaño corporal. Lic thesis, Univ Nac Patagonia S J BoscoGoogle Scholar
  102. Zimicz AN (2012) Ecomorfología de los marsupiales paleógenos de América del Sur. PhD thesis, Univ Nac La PlataGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CONICET - División Paleontología VertebradosMuseo de La PlataLa PlataArgentina
  2. 2.Department of GeologyMuseum of Northern ArizonaFlagstaffUSA
  3. 3.IBIGEO (CONICET)Universidad Nacional de SaltaSaltaArgentina
  4. 4.CIEMEP (CONICET)Universidad Nacional de la Patagonia San Juan BoscoEsquelArgentina
  5. 5.CONICET - División Paleontología de VertebradosMuseo Argentino de Ciencias NaturalesBuenos AiresArgentina

Personalised recommendations