Advertisement

Dispersal of Vertebrates from Between the Americas, Antarctica, and Australia in the Late Cretaceous and Early Cenozoic

Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The early Paleocene diversity of metatherians in Tiupampan faunas of South America and the pre-Tiupampan Paleocene polydolopimorphian Cocatherium speak in favor of an earliest Paleocene or Late Cretaceous dispersal of metatherians from North America. No Late Cretaceous metatherian or eutherian mammals have been recovered to date in South America, but the late Campanian to Maastrichtian hadrosaurine dinosaurs in Argentina, as well as the late Maastrichtian of the Antarctic Peninsula, is evidence of a biotic connection to North America. Placental ‘condylarths’ in the Tiupampan may have been related to, and dispersed southward relative to, Puercan taxa in North America and perhaps reflect a somewhat later event in comparison to metatherians. Other than hadrosaurine dinosaurs, Late Cretaceous vertebrates of South America are basically Gondwanan in affinities and reflect (and survived) the pre-106 Ma connection between South America, Africa, and Antarctica. The potential for a Late Cretaceous dispersal of metatherians would be compatible with a continued dispersal to Australia at that time, also supported by plate tectonic relationships, notwithstanding the basically endemic coeval Australian dinosaur fauna, and recognizing the essential absence of a Late Maastrichtian land vertebrate record there. An early Paleocene connection between at least Antarctica and South America is documented by the presence of a monotreme in the Peligran fauna of Patagonia. This, coupled with the fact that post-Peligran mammal faunas in South America and the Antarctic Peninsula (from at least 52 Ma in that location) are composed of derived metatherian as well as placental mammals, suggests that dispersal of metatherians to Australia had been achieved prior to the Eocene. Such timing is compatible with the still plesiomorphic level of Australian metatherians from the early Eocene Tingamarra fauna of Australia, the marine sundering of the Tasman Gate at about 50 Ma and the development of a continuously marine southern coastline of Australia from about 45 Ma effectively foreclosed overland mammal and other vertebrate dispersal to Australia thereafter.

Keywords

Metatheria South America Late cretaceous Paleogene Dispersals North America Australia Antarctica 

References

  1. Agnolin FL, Chimento NR (2011) Afrotherian affinities for endemic South American “ungulates”. Mamm Biol 76:101–108Google Scholar
  2. Agnolin FL, Ezcurra MD, Pais DF, Salisbury SW (2010) A reappraisal of the Cretaceous non-avian dinosaur fauna from Australia and New Zealand: evidence for their Gondwanan affinities. J Syst Palaeontol 8(2):257–300CrossRefGoogle Scholar
  3. Amrine-Madsen H, Keopfli K-P, Wayne RK, Springer MS (2003) A new phylogenetic marker, apoliprotein B, provides compelling evidence for eutherian relationships. Mol Phylogenetics Evol 28:225–240CrossRefGoogle Scholar
  4. Andreis RR, Mazzoni MM, Spalletti LS (1975) Estudio estratigráfico y paleoambiental de las sedimentitas teriarias entre Pico Salamanca y Bahía Bustamante, Provincia de Chubut, República Argentina. Rev Asoc Geol Arg 30:85–103Google Scholar
  5. Archer M, Godthelp H, Hand S (1993) Early Eocene marsupial from Australia. Kaupia 3:193–200Google Scholar
  6. Asher R, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:14. doi: 10.1186/1741-7007-6-14 CrossRefGoogle Scholar
  7. Asher RJ, Novacek MJ, Geisler JH (2003) Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J Mamm Evol 10:131–194CrossRefGoogle Scholar
  8. Beck RMD (2012) An ‘ameridelphian’ marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography. Naturwissenschaften 99:715–729CrossRefGoogle Scholar
  9. Beck RMD (2013) A peculiar faunivorous metatherian from the early Eocene of Australia. Acta Palaeontol Pol. doi:http://dx.doi.org/10.4202/app.2013.0011
  10. Beck RMD, Godthelp H, Weisbecker V, Archer M, Hand SJ (2008) Australia’s oldest marsupial fossils and their biogeographical implications. PLoS One 3:e1858. doi:10.137Google Scholar
  11. Bergqvist LP, Powell JE, Avilla LS (2004) A new xenungulate from the Río Loro Formation (Paleocene) from Tucumán province (Argentina). Ameghiniana Supl 41(4):36RGoogle Scholar
  12. Bernecker T, Partridge AD (2001) Emperor and golden beach subgroups: the onset of late cretaceous sedimentation in the gippsland basin, SE Australia. PESA Eastern Australasian Basins symposium, pp 391–402Google Scholar
  13. Bertini RJ, Marshall LG, Brito P (1993) Vertebrate faunas from the Adamantina and Marilia formations (Upper Bauru Group, late Cretaceous, Brazil) in their stratigraphic and paleobiogeographic context. N Jb Geol Paläont Abh 188(1):71–101Google Scholar
  14. Bijl PK, Schouten S, Sluijs A, Reichart G-J, Zachos JC, Brinkhuis H (2009) Early Paleogene temperature evolution of the southwest Pacific Ocean. Nature 461:776–779CrossRefGoogle Scholar
  15. Bijl PK, Bendie JAP, Bohaty SM, Pross J, Schouten S, Tauxe L, Stickley CE, McKay RM, Röhl U, Olney M, Sluijs A, Escutia C, Brinkhuis H, Expedition 318 Scientists (2013) Eocene cooling linked to early flow across the Tasmanian Gateway. PNAS Early Ed. doi: 10.1073/pnas.1220872110 Google Scholar
  16. Bininda-Emonds ORP, Cardillo J, Jones KE, MacPhee RDE, Beck RMD, Greyner F et al (2007) The delayed rise of present-day mammals. Nature 446:507–512CrossRefGoogle Scholar
  17. Birkenmajer K, Gaździcki A, Krajweski KP, Przybycin A, Solecki A, Tatur A, Yoon HI (2005) First Cenozoic glaciers in West Antarctica. Polish Polar Res 26(1):3–12Google Scholar
  18. Black KH, Archer M, Hand S, Godthelp H (2012) The rise of Australian marsupials: a synopsis of biostratigraphic, phylogenetic, palaeoecologic and palaeobiogeographic understanding. In: Talent JA (ed) Earth and life, international year of planet earth. doi  10.1007/978-481-3429-1_35 Google Scholar
  19. Blevin JE, Trig KR, Partridge AD, Boreham CJ, Lang SC (2005) Tectonostratigraphy and potential source rocks of the Bass Basin. APPEA J 45:601–621Google Scholar
  20. Bohaty SM, Zachos JC (2003) Significant Southern Ocean warming event in the late middle Eocene. Geology 31:1017–1020CrossRefGoogle Scholar
  21. Bonaparte JF (1987) The Late Cretaceous fauna of Los Alamitos, Patagonia, Argentina. Rev Mus Arg Cs Nat “B. Rivadavia” Paleont 3(3):103–178Google Scholar
  22. Bond M, Kramarz A, MacPhee RDE, Reguero MA (2011) A new astrapothere (Mammalia, Meridungulata) from La Meseta Formation, Seymour (Marambio) Island, and a reassessment of previous records of Antarctic species. Amer Mus Novitates 3718:1–16CrossRefGoogle Scholar
  23. Candeiro CRA, Rich T (2010) Overview of the Late Cretaceous biota of the western São Paulo State, Brazil, Bauru Group. J South Amer Earth Sci 29:346–353CrossRefGoogle Scholar
  24. Candeiro CRA, Abranches CT, Abrantes EA, Avilla LS, Martins VC, Moreira AL, Torres SR, Bergqvist LP (2004) Dinosaurs remains from western São Paulo state, Brazil (Baru Basin, Adamantina Formation, Upper Cretaceous. J South Amer Earth Sci 18:1–10CrossRefGoogle Scholar
  25. Candeiro CRA, Martinelli AG, Avila LS, Rich TH (2006) Tetrapods from the upper Cretaceous (Turonian—Maastrichtian Baru group of Brazil: a reappraisal. Cretac Res 27:923–946CrossRefGoogle Scholar
  26. Candeiro CRA, Santos AR, Bergqvist LP, Ribeiro LCB, Apestgeuía S (2008) The Late Cretaceous fauna and flora of the Uberaba area (Minas Gerais State, Brazil). J South Amer Earth Sci 25:203–216CrossRefGoogle Scholar
  27. Carpenter RJ, Jordan GJ, Macphail MK, Hill RS (2012) Near-tropical early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology 40(3):267–270CrossRefGoogle Scholar
  28. Case JA, Martin JE, Chaney DS, Reguero M, Marenssi SA, Santillana SM, Woodburne MO (2000) The first duck-billed dinosaur (Family Hadrosauridae) from Antarctica. J Vert Paleontol 20(3):612–614CrossRefGoogle Scholar
  29. Case JA, Goin FJ, Woodburne MO (2005) “South American” marsupials from the Late Cretaceous of North America and the origin of marsupial cohorts. J Mamm Evol 12(3/4):461–494CrossRefGoogle Scholar
  30. Case JA, Martin JE, Reguero M (2007) A dromaeosaur from the Maastrichtian of James Ross Island and the Late Cretaceous Antarctic dinosaur fauna. US Geol Surv Nat Acad USGS OF-2007-1047, Short Res Paper 083. doi: 10.3133/of2007-1047.srp083
  31. Chornogubsky L, Goin FJ, Reguero M (2009) A reassessment of Antarctic polydolopid marsupials (Middle Eocene, La Meseta Formation). Antarct Sci 21(3):285–297CrossRefGoogle Scholar
  32. Churakov G, Kriegs JO, Baertsch R, Zemann A, Brosius J, Schmitz J (2009) Mosaic retroposon insertion patterns in placental mammals. Genome Res 19:868–875CrossRefGoogle Scholar
  33. Clyde WC, Wilf P, Iglesias A, Slingerland RL, Barnum T, Bijl PK, Bralower TJ, Brinkhuis H, Comer EE, Huber BT, Ibañez-Mejia M, Jicha BR, Krause JM, Schueth JD, Singer BS, Raigemborn MS, Schmitz MD, Sluijs A, Zamaloa M del C (2014) New age constraints for the Salamanca Formation and lower Rio Chico Group in the western San Jorge Basin, Patagonia, Argentina: implications for K/Pg extinction recovery and land mammal age correlations. Geol Soc Amer Bull 126(3/4):289–306Google Scholar
  34. Crawford A, Smith EN (2005) Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleuterodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Mol Phylogenetics Evol 35:536–555CrossRefGoogle Scholar
  35. Cummings AM, Hillis RR, Tingate PR (2004) New perspectives on the structural evolution of the Bass Basin: implications for petroleum prospectivity. In: PESA Eastern Australasian Symposium II, pp 133–149Google Scholar
  36. de la Fuente M, Salgado L, Albino A, Báez AM, Bonaparte JF, Calvo JO, Chiappe LM, Codorniú LS, Coria RA, Gasparini Z, González Riga BJ, Novas FE, Pol D (2007) Tetrápodos continentales del Cretácico de la Argentina: una síntesis actualizada. Asoc Paleont Arg Publ Esp 11:137–153Google Scholar
  37. de Muizon C (1991) La fauna de mamiferos de Tiupampa (Paleoceno inferior, Formación Santa Lucia), Bolivia. In: Suarez-Soruco R (ed) Fósiles y Facies de Bolivia, vol 1 (Vertebrados). Rev Tecn YPFB 3/4:575–624Google Scholar
  38. de Muizon C (1998) Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Paleocene of Bolivia. Phylogenetic and paleobiologic implications. Geodiversitas 20(1):19–142Google Scholar
  39. de Muizon C, Brito IM (1993) Le bassin calciaire de Sáo José de Itaboraí (Rio de Janeiro, Brésil): ses relacions fauniques avec le site de Tiupampa (Cochambamba, Bolivie). Annal Palaeontol 79:233–269Google Scholar
  40. de Muizon C, Cifelli RL (2000) The ‘condylarths’ (archaic Ungulata, Mammalia) from the early Palaeocene Tiupampa (Bolivia): implications on the origin of the South American ungulates. Geodiversitas 22(1):47–150Google Scholar
  41. dos Reis M, Inoue J, Haseqawa M, Asher RJ, Donoghue PCJ, Yang Z (2012) Phylogenetic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc R Soc B 279(1742):3491–3500CrossRefGoogle Scholar
  42. Elzanowski A, Boles WE (2012) Australia’s oldest anseriform fossil: a quadrate from the early Eocene Tingamarra Local Fauna. Palaeontology 55(4):903–911CrossRefGoogle Scholar
  43. Exon NF, Kennett JP, Malone MJ (2004) 1 Leg 189 synthesis: Cretaceous—Holocene history of the Tasmanian Gateway. In: Exon NF, Kennett JP, Malone MJ (eds) Proceeding of the ocean drilling program, scientific results, vol 189, pp 1–37Google Scholar
  44. Figueirido B, Janis CM, De Renzi M, Palmqvist P (2012) Cenozoic climate change influences mammalian evolutionary dynamics. PNAS 109(3):722–727CrossRefGoogle Scholar
  45. Forasiepi AM (2009) Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr Mus Arg Cs Nat NS 6:1–174Google Scholar
  46. Francis JE, Ashworth A, Cantrill DJ, Crame JA, Howe J, Stephens R, Tosolini A-M, Thorn V (2008) 100 million years of Antarctic climate evolution: evidence from fossil plants. In: Cooper AK, Barrett PJ, Stagg H, Storey B, Stump E (eds) Antarctica: a keystone in a changing world, W Wise and the 10th ISAES editorial team. Proceedings of the 10 international symposium Antarctic Earth Sciences. The National Academies Press, WashingtonGoogle Scholar
  47. Gaffney ES, Bartholomai A (1979) Fossil trionychids from Australia. J Palaeontol 53(6):1354–1360Google Scholar
  48. Gayet M, Marshall LG, Sempere T, Meunier FJ, Cappetta H, Rage J-C (2001) Middle Maastrichtian vertebrates (fishes, amphibians, dinosaurs and other reptiles, mammals) from Pajcha Pata (Bolivia). Biostratigraphic, palaeoecologic and palaeobiogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 169:39–68CrossRefGoogle Scholar
  49. Gelfo JN, Goin FJ, Woodburne MO, de Muizon C (2009) Biochronological relationships of the earliest South American Paleogene mammalian faunas. Palaeontology 52(1):251–269CrossRefGoogle Scholar
  50. Gheerbrant E (2009) Paleocene emergence of elephant relatives and the rapid radiation of African ungulates. PNAS 106(26):10717–10721CrossRefGoogle Scholar
  51. Godthelp H, Archer M, Cifelli R, Hand S, Gilkeson CF (1992) Earliest known Australian Tertiary mammal fauna. Nature 356:514–516CrossRefGoogle Scholar
  52. Godthelp H, Wroe S, Archer M (1999) A new marsupial from the Early Eocene Tingamarra Local Fauna of Murgon, southeastern Queensland: a prototypical Australian marsupial? J Mamm Evol 6:289–313CrossRefGoogle Scholar
  53. Goin FJ, Abello MA (2013) Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno temprano, Edad-mamífero Colhuehuapense). Parte 2: Microbiotheria y Polydolopimorphia. Ameghiniana 50(1):51–78CrossRefGoogle Scholar
  54. Goin FJ, Pascual R, Tejedor M, Gelfo JN, Woodburne MO, Case JA, Reguero MA, Bond M, López GM, Cione AL, Sauthier DU, Ballarino L, Scasso RA, Medina FA, Ubaldón MC (2006) The earliest Tertiary therian mammal from South America. J Vert Paleontol 26(2):505–510CrossRefGoogle Scholar
  55. Goin FJ, Candela AM, Abello A, Oliveira EO (2009) Earliest South American paucituberculatans and their significance in understanding of “pseudodiprotodont” marsupial radiations. Zool J Linn Soc 155:867–884CrossRefGoogle Scholar
  56. Goin FJ, Abello MA, Chornogubsky L (2010) Middle Tertiary marsupials from central Patagonia (early Oligocene of Gran Barranca): understanding South America’s Grand Coupure. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca. Cambridge University Press, CambridgeGoogle Scholar
  57. Goin FJ, Gelfo JN, Chornogubsky L, Woodburne MO, Martin T (2012a) Origins, radiations, and distribution of South American mammals: from greenhouse to icehouse worlds. In: Patterson BD, Costa LP (eds) Bones, clones, and biomes: an 80-million year history of recent Neotropical mammals. University of Chicago Press, ChicagoGoogle Scholar
  58. Goin FJ, Tejedor MF, Chornogubsky L, López GM, Gelfo JN, Bond M, Woodburne MO, Gurovich Y, Reguero M (2012b) Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia. Naturwissenschaften 99:449–463CrossRefGoogle Scholar
  59. Goin FJ, Zimicz N, Forasiepi AM, Chornogubsky LC, Abello MA (2013) The rise and fall of South American metatherians: contexts, adaptations, radiations, and extinctions. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American mammals. Springer, New YorkGoogle Scholar
  60. Gurovich Y, Beck R (2009) The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J Mamm Evol 16:25–49CrossRefGoogle Scholar
  61. Hahn G, Hahn R (2003) New multituberculate teeth from the Early Cretaceous of Morocco. Acta Palaeontol Pol 48:349–356Google Scholar
  62. Hahn G, Hahn R (2006) Evolutionary tendencies and systematic arrangement in the Haramyida (Mammalia). Geol Palaeontol 40:173–193Google Scholar
  63. Hallström BM, Kullberg M, Nilsson MA, Janke A (2007) Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. Mol Biol Evol 24(9):2059–2068CrossRefGoogle Scholar
  64. Hand S, Novacek M, Godthelp H, Archer M (1994) First Eocene bat from Australia. J Vert Paleontol 14(3):375–381CrossRefGoogle Scholar
  65. Heinicke MP, Duellman WE, Hedges SB (2007) Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. PNAS 104(24):10092–10097CrossRefGoogle Scholar
  66. Herrera F, Manchester SR, Hoot SB, Wefferling KM, Carvalho MR, Jaramillo C (2011) Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. Amer J Bot 98(12):2004–2017CrossRefGoogle Scholar
  67. Hill PJ, Exon NF (2004) Tectonics and basin development of the offshore Tasmania area incorporating the results from deep ocean drilling. The Cenozoic Southern Ocean: tectonics, sedimentation and climate change between Australia and Antarctica. Amer Geophys Union, Geophysical Monogr Ser 151:19–42Google Scholar
  68. Hofford SP, Hillis RR, Duddy IR, Green PF, Stoker MS, Tuitt AK, Backé G, Tassone DR, MacDonald JD (2011) Cenozoic post-breakup compressional deformation and exhumation of the southern Australian margin. APPEA J 51:618–638Google Scholar
  69. Hollis CJ, Handley L, Crouch EM, Morgans HEG, Baker JA, Creech J, Collins KS, Gibbs SJ, Huber M, Schouten S, Zachos JC, Pancost RD (2009) Tropical sea temperatures in the high-latitude South Pacific. Geology 37:99–110CrossRefGoogle Scholar
  70. Horovitz I, Martin T, Bloch J, Ladevèze S, Kurz C, Sánchez-Villagra M (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS ONE 4(12):e8278. doi: 10.1371/journal.pone.0008278 Google Scholar
  71. Iglesias A, Wilf P, Johnson KR, Zamuner AB, Cuńeo NR, Matheos SD (2007) A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology 35(10):947–950CrossRefGoogle Scholar
  72. Ivany LC, Lohmann KC, Hasiuk F, Blake DB, Glass A, Aronson RB, Moody RM (2008) Eocene climate record of a high southern latitude continental shelf: Seymour Island. Antarctica Geol Soc Amer Bull 120(5/6):659–678CrossRefGoogle Scholar
  73. Jacobs LL, Strganac C, Scotese C (2011) Plate motions, Gondwana dinosaurs, Noah’s arks, beached Viking funeral ships, Ghost ships, and landspans. An Acad Bras Cs 83(1):3–22CrossRefGoogle Scholar
  74. Juárez Valieri RD, Haro JA, Fiorelli LE, Calvo JO (2010) A new hadrosaurid (Dinosauria: Ornithopoda) from the Allen Formation (Late Cretaceous) of Patagonia, Argentina. Rev Mus Arg Cs Nat NS 12(2):217–231CrossRefGoogle Scholar
  75. Kielan-Jaworowska Z, Ortiz-Jaureguizar E, Vieytes C, Pascual R, Goin FJ (2007) First ?cimolodontan multituberculate mammal from South America. Acta Palaeontol Pol 52(2):257–262Google Scholar
  76. Lawver LA, Gahagan LM, Dalziel IWD (2011) A different look at gateways: Drake Passage and Australia/Antarctica. In: Anderson JB, Wellner JS (eds) Tectonic, climate, and cryospheric evolution of the Antarctic Peninsula. The Amer Geophys Union Sp Publications, vol 63, pp 5–33Google Scholar
  77. Lawver LA, Dalziel IWE, Gahagan LM, Norton IO (2013) Intercontinental dispersal routes for South American land mammals: paleogeographic constraints. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American mammals. Springer, New YorkGoogle Scholar
  78. Leanza HA, Apesteguía S, Novas FE, de la Fuente MS (2004) Cretaceous terrestrial beds from the Neuquén Basin (Argentina) and their tetrapod assemblages. Cretac Res 25:61–87CrossRefGoogle Scholar
  79. López G, Gelfo JN, Bond M, Lorente M, Reguero MA (in press) Towards the origin of South American native ungulates and their Paleocene and Eocene diversity. In: Rosenberger AL, Tejedor MF (eds) Origins and evolution of Cenozoic South American mammals. Springer, New YorkGoogle Scholar
  80. Luterbacher HP, Ali JR, Brinkhuis H, Gradstein FM, Hooker JJ, Monechi S, Ogg JG, Powell J, Röhl U, Sanfilippo A, Schmitz B (2004) Paleogene. In: Gradstein F, Ogg J, Smith A (eds) A geologic time scale. Cambridge University Press, CambridgeGoogle Scholar
  81. Marshall LG, Hoffstetter R, Pascual R (1983) Mammals and stratigraphy: geochronology of the continental mammal-bearing Tertiary of South America. Palaeovertebrata Mem Extraord, 1–93Google Scholar
  82. Massabie AE (1995) Estratigrafía del límite Cretácico-Terciario de la región del Río Colorado, según el perfil de Casa de Piedra, provincia de La Pampa. 12 Congr Geol Arg 2 Congr Expl Hidrocarb Mendoza Actas 2:124–131Google Scholar
  83. McInerney FA, Wing SL (2011) The Paleocene-Eocene Thermal Maximum; a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann Rev Earth Planet Sci 39:489–516CrossRefGoogle Scholar
  84. McKenna MC, Bell SJ (2002) Classification of mammals above the species level. Columbia University Press, New YorkGoogle Scholar
  85. Megirian D, Prideaux GJ, Murray PF, Smit N (2010) An Australian land mammal age biochronological scheme. Paleobiology 36(4):658–671CrossRefGoogle Scholar
  86. Meredith RW, Janecka JE, Gatesy J (2011) Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(521):521–524Google Scholar
  87. Murphy PR, Schwarzbock H, Cranfield LC, Withnall IW, Murray CG (1976) Geology of the Gympie 1:250,000 Sheet Area. Geol Surv Queensland Rep 96:1–157Google Scholar
  88. Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421CrossRefGoogle Scholar
  89. Murphy BH, Farley KA, Zachos JC (2010) An extraterrestrial 3He-based timescale for the Paleocene-Eocene Thermal Maximum (PETM) from Walvis Ridge, IODP site 1266. Geochem Cosmochem Acta 74:5098–5108CrossRefGoogle Scholar
  90. Nilsson MA, Churakov G, Sommer M, Tran NV, Zemann A, Brosius J, Schmitz J (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8(7):1–9CrossRefGoogle Scholar
  91. Nishihara H, Maruyama S, Okada N (2009) Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. PNAS 106(13):5235–5240CrossRefGoogle Scholar
  92. Norvik MS (2000) Plate tectonic reconstructions of Australia’s southern margins. Geosci Aust Rec 2005(07):1–107Google Scholar
  93. Norvik MS, Smith MA, Power MR (2001) The plate tectonic evolution of eastern Australia guided by the stratigraphy of the Gippsland Basin. In: PSEA Eastern Australasian Basins symposium, pp 15–23Google Scholar
  94. O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Gaillombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AR (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667CrossRefGoogle Scholar
  95. Pascual R, Ortiz-Jaureguizar E (2007) The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J Mamm Evol 14:75–137CrossRefGoogle Scholar
  96. Pascual R, Ortega Hinojosa EJ, Gondar D, Tonni E (1965) Las edades del Cenozóico mamalifero de la Argentina, con especial atención a aquellas del territorio bonarense. Anales Comisión Invest Cient Buenos Aires 6:165–193Google Scholar
  97. Pascual R, Archer M, Ortiz-Jaureguizar E, Prado JL, Godthelp H, Hand SJ (1992) First discovery of monotremes in South America. Nature 356:704–705CrossRefGoogle Scholar
  98. Pascual R, Goin FJ, González P, Ardolino A, Puerta PF (2000) A highly derived docodont from the Patagonian Late Cretaceous: evolutionary implications for Gondwanan mammals. Geodiversitas 22(3):395–414Google Scholar
  99. Patterson B, Pascual R (1972) The fossil mammal fauna of South America. In: Keast AE, Erk FC, Glass B (eds) Evolution, mammals, and southern continents. State University New York Press, AlbanyGoogle Scholar
  100. Penkrot TA, Zack SP, Rose KD, Bloch DI (2008) Postcranial morphology of Apheliscus and Haplomylus (Condylarthra, Apheliscidae): evidence for a Paleocene Holarctic origin of Macroscelidea. In: Sargis EJ, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, New YorkGoogle Scholar
  101. Pindell JL, Kennan LJG (2001) Kinematic evolution of the Gulf of Mexico and the Caribbean. In: Fillon R (ed) Transactions, 21st Bob Perkins GCSSEPM research conferenceGoogle Scholar
  102. Pindell J, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In the origin and evolution of the Caribbean Plate. Geol Soc London Sp Publ 328:1–55Google Scholar
  103. Poole I, Cantrill D, Utescher T (2005) A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary. Palaeogeogr Palaeoclimat Palaeoecol 222:95–121CrossRefGoogle Scholar
  104. Powell JE (1987) Hallazgo de un dinosaurio hadrosaurido (Ornithischia, Ornithopoda) en la Formación Allen (Cretácico Superior) de Salitral Moreno, Provincia de Río Negro, Argentina. Actas 10 Congr Geol Arg 3:149–152Google Scholar
  105. Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, Bendle JA, Röhl U. Tauxe L, Raine JI, Huck CE, van de Flierdt T, Jamieson SSR, Stickley CE, van de Schootbrugge B, Escutia C, Brinkhuis H, and Integrated Ocean Drilling Program Expedition 318 Scientists (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77Google Scholar
  106. Rage J-C (1978) Une connexion continentale entre Amérique du Nord et Amérique du Sud au Crétacé superieur? L’exemple des vertébrés continentaux. Compt Rendu somm Sc Soc Géol France 6:281–285Google Scholar
  107. Rage J-C (2005) Fossil snakes from the Paleocene of São José de Itaboraí, Brazil. Part III. Ungaliophiinae, booids, incertae sedis, and Caenophidia. Summary, update, and discussion of the snake fauna from the locality. Palaeovertebrata 36(1–4):37–73Google Scholar
  108. Reguero MA, Marenssi SA (2010) Paleogene climatic and biotic events in the terrestrial record of the Antarctic Peninsula: an overview. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The Paleontology of Gran Barranca. Cambridge University Press, CambridgeGoogle Scholar
  109. Reguero MA, Marenssi SA, Santillana SN (2002) Antarctic Peninsula and South America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships. Palaeogeogr Palaeoclimatol Palaeoecol 179:189–210CrossRefGoogle Scholar
  110. Rich TH, Rich PV, Flannery TF, Kear BP, Cantrill D, Komarower P, Kool L, Pickering D, Trusler P, Morton S, van Klaveren N, Fitgzgerald MG (2009) An Australian multituberculate and its paleobiogeographic implications. Acta Palaeontol Polonica 54(1):1-6Google Scholar
  111. Rougier GW, Chornogubsky L, Casadio S, Arango NP, Gaillombardo A (2009a) Mammals from the Allen Formation, Late Cretaceous, Argentina. Cretac Res 30:223–238CrossRefGoogle Scholar
  112. Rougier GW, Forasiepi AM, Hill RV, Novacek MJ (2009b) New mammalian remains from the Late Cretaceous La Colonia Formation, Patagonia. Argentina Acta Palaeont Pol 54(2):195–212CrossRefGoogle Scholar
  113. Rougier GW, Apesteguía S, Gaetano LS (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98–102CrossRefGoogle Scholar
  114. Ruiz LE (2006) Estudio sedimetológico y estratigráfico de las formaciones Paso del Sapo y Lefipán en el valle medio del Río Chubut. Master thesis, University of Buenos AiresGoogle Scholar
  115. Salgado L, Gasparini Z (2006) Reappraisal of an ankylosaurian dinosaur from the Upper Cretaceous of James Ross Island (Antarctica). Geodiversitas 28(1):119–135Google Scholar
  116. Sánchez-Villagra M, Narita Y, Kuratani S (2007) Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Syst Biodiv 5(1):1–7CrossRefGoogle Scholar
  117. Scanlon JD (2005) Australia’s oldest known snakes: Patagoniophis, Alamitophis, and cf. Madtsoia (Squamata: Madstoiidae) from the Eocene of Queensland. Mem Queensland Mus 51(1):215–235Google Scholar
  118. Seiffert ER (2007) A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evol Biol 7. doi: 10.1186/1471-2148-7-224 Google Scholar
  119. Sigé B, Sempere T, Butler RF, Marshall LG, Crochet JY (2004) Age and stratigraphic reassessment of the fossil-bearing Laguna Umayo red mudstone unit, SE Peru, from regional stratigraphy, fossil record, and paleomagnetism. Geobios 37:771–794CrossRefGoogle Scholar
  120. Sigé B, Archer M, Crochet J-Y, Godthelp H, Hand S, Beck RMD (2009) Chulpasia and Thylacotinga, late Paleocene-earliest Eocene trans-Antarctic Gondwanan bunodont marsupials: new data from Australia. Geobios 42:813–823CrossRefGoogle Scholar
  121. Sigogneau-Russell D (1991) First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. N Jb Pälaont Abh 2:119–125Google Scholar
  122. Simpson GG (1971) The evolution of marsupials in South America. Ann Acad Bras Ciénc 43:103–119Google Scholar
  123. Spalletti LA, Matheos SD, Merodio JC (1999) Sedimentitas carbonaticas Cretacico-Terciaris de la platforma norpatagonica. Actas 12 Congr Geol Arg, 2 Congr Expl Hidrocarburos 1:249–257Google Scholar
  124. Springer MS, Murphy WJ (2007) Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev 82:375–392CrossRefGoogle Scholar
  125. Springer MS, Cleven GC, Madsen O, de Jong WW, Waddell VG, Amrine HM, Stanhope MJ (1997) Endemic African mammals shake the phylogenetic tree. Nature 388:61–64CrossRefGoogle Scholar
  126. Springer MS, Amrine HM, Burk A, Stanhope MJ (1999) Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst Zool 48(1):65–75Google Scholar
  127. Springer MS, Meredith RW, Teeling EC, Murphy WJ (2013) Technical comment on the placental mammal ancestor and the post–K-Pg radiation of placentals. Science 341:613Google Scholar
  128. Stanhope MJ, Madsen O, Waddell VG, Cleven GC, de Jong WW, Springer MS (1998) Highly congruent molecular support for a diverse superordinal clade of endemic African mammals. Mol Phylogenetics Evol 9(3):501–508CrossRefGoogle Scholar
  129. Stein M, Salisbury SW, Hand SJ, Archer M, Godthelp H (2012) Humeral morphology of the early Eocene mekosuchine crocodylian Kambara from the Tingamarra Local Fauna southeastern Queensland. Aust Alcheringa 36(4):1–15Google Scholar
  130. Szalay FS (1982) Phylogenetic relationships of the marsupials. Geobios Mém Spéc 6:177–190CrossRefGoogle Scholar
  131. Szalay FS (1994) Evolutionary history of the marsupials and an analysis of osteological characters. Cambridge University Press, New YorkGoogle Scholar
  132. Tabuce R, Marivaux L, Adaci M, Bensalah M, Hartenbarger J-L, Mahboubi M, Mebrouk F, Tafforeau P, Jaeger J-J (2007) Early Tertiary mammals from North Africa reinforce the molecular Afrotheria clade. Proc R Soc B 274:1159–1166CrossRefGoogle Scholar
  133. Tabuce R, Asher RJ, Lehmann T (2008) Afrotherian mammals: a review of current data. Mammalia 72:2–14CrossRefGoogle Scholar
  134. Tsuki K, Clyde WC (2012) Fine-tuning the caslibration of the early to meddle Eocene geomagnetic polarity time scale: Paleomagnetism of radioisotopically dated tuffs from Laramide foreland basins. Geol Soc Amer Bull 124(5/6):870–885CrossRefGoogle Scholar
  135. Vandenberghe N, Hilgen FJ, Speijer RP (2012) The Paleogene Period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, AmsterdamGoogle Scholar
  136. Waddell PJ, Cao Y, Hasegawa M, Mindell DP (1999) Assessing the Cretaceous superordinal divergence times within birds and placental mammals using whole mitochrondrial protein sequences and an extended statistical framework. Syst Biol 48(1):119–137CrossRefGoogle Scholar
  137. Westerhold T, Röhl U, Donner B, McCarren H, Zachos J (2009) Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and -17. Earth Planet Sci Let 287:412–419CrossRefGoogle Scholar
  138. White TS (2004) A chemostratigraphic and geochemical facies analysis of strata deposited in an Eocene Australo-Antarctic Seaway: is cyclicity evidence for glacioeustacy? Amer Geophys Union Monogr Ser 148, Climate Evolution in the Southern Ocean 153–172Google Scholar
  139. Williamson TE, Carr TD (2007) Bomburia and Ellipsodon (Mammalia: Mioclaenidae) from the early Paleocene of New Mexico. J Paleontol 81(5):966–985CrossRefGoogle Scholar
  140. Willis PMA, Molnar RE, Scanlon JD (1993) An early Eocene crocodilian from Murgon, southeastern Queensland. Kaupia 3:27–33Google Scholar
  141. Wilson DS, Luyendyk BP (2009) West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition. Geophys Res Let 36. doi: 10.1029/2009GL039297
  142. Wolfe JA (1978) A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Amer Scient 66:694–703Google Scholar
  143. Woodburne MO (2004) Definition. In: Woodburne MO (ed) Late Cretaceous and Cenozoic Mammals of North America: biostratigraphy and geochronology. Columbia University Press, New YorkCrossRefGoogle Scholar
  144. Woodburne MO (2010) The Great American Biotic Interchange; dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264CrossRefGoogle Scholar
  145. Woodburne MO, Case JA (1996) Dispersal, vicariance and the late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J Mamm Evol 3(2):121–161CrossRefGoogle Scholar
  146. Woodburne MO, Gunnell GF, Stucky RK (2009a) Climate directly influences Eocene mammal faunal dynamics in North America. PNAS 106(32):13399–13403CrossRefGoogle Scholar
  147. Woodburne MO, Gunnell GF, Stucky RK (2009b) Land mammal faunas of North America rise and fall during the Early Eocene Climatic Optimum. Denver Mus Nat Sci Ann 1:1–75Google Scholar
  148. Woodburne MO, Goin FJ, Bond M, Carlini A A, Gelfo JN, López GM, Iglesias A, Zimicz, AN (2014) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mamm Evol. doi  10.1007/s10914-012-9222-1
  149. Wroe S, Archer M (2006) Origins and early radiations of marsupials. In: Merrick J, Archer M, Hickey GM, Lee MSY (eds) Evolution and Biogeography of Australasian Vertebrates. Australian Scientific Publishing, SydneyGoogle Scholar
  150. Zachos J, Pagani M, Sloan L, Thomas E, Billip K (2001) Trends, rhythms, and aberrations in global climate, 65 Ma to present. Science 292(5517):686–693CrossRefGoogle Scholar
  151. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 45:279–283CrossRefGoogle Scholar
  152. Zack SP, Penkrot TA, Bloch JI, Rose KD (2005) Affinities of ‘hyopsodontids’ to elephant shrews and a Holarctic origin of Afrotheria. Nature 434:497–501CrossRefGoogle Scholar
  153. Zimicz AN (2012) Ecomorfología de los marsupiales paleógenos de América del Sur. Unpublished PhD. thesis, Universidad Nacional La PlataGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.División Paleontología VertebradosMuseo de La PlataLa PlataArgentina
  2. 2.Department of GeologyMuseum of Northern ArizonaFlagstaffUSA
  3. 3.Universidad Nacional de SaltaSaltaArgentina
  4. 4.Facultad de Ciencias NaturalesUniv Nacional de la Patagonia S.JEsquelArgentina
  5. 5.División Paleontología de VertebradosMuseo Argentino de Ciencias NaturalesBuenos AiresArgentina

Personalised recommendations