Skip to main content

Interspecific Mycorrhizal Networks and Non-networking Hosts: Exploring the Ecology of the Host Genus Alnus

  • Chapter
  • First Online:
Mycorrhizal Networks

Part of the book series: Ecological Studies ((ECOLSTUD,volume 224))

Abstract

While the dominant ectomycorrhizal (ECM) fungi in most temperate and tropical forests have low host specificity , a commonly cited exception to this pattern is the ECM fungal community associated with the host genus Alnus. In this chapter, we discuss multiple hypotheses that have been put forth to explain the specificity of the Alnus ECM symbiosis and consider their strengths and weaknesses in light of current research on the topic. In addition to reviewing the range of suggested explanations, we also propose and discuss a new alternative explanation of Alnus ECM specificity involving three-way interactions among Alnus plants, ECM fungi, and Frankia bacteria. With specific regard to common mycorrhizal networks (CMNs), we believe they may play an important role in the specificity observed in the Alnus ECM system. To understand that role in the larger context of research on Alnus ECM fungal communities, we begin our chapter with a synopsis of the studies documenting the unique specificity pattern. From there, we discuss why it appears to be advantageous for Alnus plants not to participate in interspecific CMNs. Finally, we elaborate on how specificity may be established and maintained in the Alnus ECM system and suggest what we consider to be promising future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agren GI, Ingestad T (1987) Root: shoot ratios as a balance between nitrogen productivity and photosynthesis. Plant Cell Environ 10:579–586. doi:10.1111/1365-3040.ep11604105

    Google Scholar 

  • Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW (2011) Economic game theory for mutualism and cooperation. Ecol Lett 14:1300–1312. doi:10.1111/j.1461-0248.2011.01697.x

    Article  PubMed  Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 124:231–242. doi:10.1111/j.1469-8137.1993.tb03812.x

    Article  Google Scholar 

  • Avis PG, McLaughlin D, Dentinger B, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253. doi:10.1046/j.1469-8137.2003.00865.x

    Article  Google Scholar 

  • Becerra A, Zak M, Horton TR, Micolini J (2005) Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15:525–531. doi:10.1007/s00572-005-0360-7

    Article  PubMed  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553. doi:10.1111/j.1469-8137.2009.03069.x

    Article  CAS  PubMed  Google Scholar 

  • Benson DR, Clawson ML (2002) Evolution of the actinorhizal plant symbioses. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of biological process. Horizon Scientific Press, Wymondham, pp 207–224

    Google Scholar 

  • Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plantarum 130:318–330. doi:10.1111/j.1399-3054.2007.00934.x

    Article  CAS  Google Scholar 

  • Bent E, Kiekel P, Brenton R, Taylor DL (2011) Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses. Appl Environ Microbiol 77:3351–3359. doi:10.1128/AEM.02575-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352. doi:10.1111/j.1469-8137.2005.01429.x

    Article  PubMed  Google Scholar 

  • Bidartondo M, Bruns T (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549–1560. doi:10.1111/j.1365-294X.2005.02503.x

    Article  CAS  PubMed  Google Scholar 

  • Bogar LM, Kennedy PG (2013) New wrinkles in an old paradigm: neighborhood effects modify the structure and specificity of Alnus-associated ectomycorrhizal fungal communities. FEMS Microbiol Ecol 83:767–777. doi:10.1111/1574-6941.12032

    Article  CAS  PubMed  Google Scholar 

  • Bogar LM, Dickie IA, Kennedy PG (2015) Testing the co-invasion hypothesis: ectomycorrhizal fungal communities on Alnus glutinosa and Salix fragilis in New Zealand. Divers Distrib. 21:268–278. doi:10.1111/ddi.12304

  • Booth MG (2004) Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest. Ecol Lett 7:538–546. doi:10.1111/j.1461-0248.2004.00605.x

    Article  Google Scholar 

  • Booth MG, Hoeksema JD (2010) Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91:2294–2302. doi:10.1890/09-1139.1

    Article  PubMed  Google Scholar 

  • Bormann B, Cromack K, Russell W (1994) Influences of red alder on soils and long-term ecosystem productivity. In: Hibbs D, DeBell D, Tarrant R (eds) The biology and management of red alder. Oregon State University Press, Corvallis, pp 47–56

    Google Scholar 

  • Brunner IL, Brunner F, Miller OK (1990) Ectomycorrhizal synthesis with Alaskan Alnus tenuifolia. Can J Bot 68:761–767. doi:10.1139/b90-101

    Article  Google Scholar 

  • Bruns T, Read D (2000) In vitro germination of nonphotosynthetic, myco-heterotrophic plants stimulated by fungi isolated from the adult plants. New Phytol 148:335–342. doi:10.1046/j.1469-8137.2000.00766.x

    Article  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359. doi:10.1093/icb/42.2.352

    Article  PubMed  Google Scholar 

  • Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment. New Phytol 181:463–470. doi:10.1111/j.1469-8137.2008.02652.x

    Article  PubMed  Google Scholar 

  • Bull JJ, Rice WR (1991) Distinguishing mechanisms for the evolution of co-operation. J Theor Biol 149:63–74. doi:10.1016/S0022-5193(05)80072-4

    Article  CAS  PubMed  Google Scholar 

  • Chatarpaul L, Chakaravarty P, Subramaniam P (1989) Studies in tetrapartite symbioses. 1. Role of ectomycorrhizal and endomycorrhizal fungi and Frankia on the growth-performance of Alnus incana. Plant Soil 118:145–150. doi:10.1007/BF02232800

    Article  Google Scholar 

  • Cline E, Ammirati J, Edmonds R (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009. doi:10.1111/j.1469-8137.2005.01387.x

    Article  CAS  PubMed  Google Scholar 

  • Compton J, Cole D (1998) Phosphorus cycling and soil P fractions in Douglas-fir and red alder stands. For Ecol Manage 110:101–112. doi:10.1016/S0378-1127(98)00278-3

    Article  Google Scholar 

  • Compton J, Cole D (2001) Fate and effects of phosphorus additions in soils under N-2-fixing red alder. Biogeochemistry 53:225–247. doi:10.1023/A:1010646709944

    Article  CAS  Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319. doi:10.1111/j.1469-8137.2005.01401.x

    Article  CAS  PubMed  Google Scholar 

  • Courty PE, Buee M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698. doi:10.1016/j.soilbio.2009.12.006

    Article  CAS  Google Scholar 

  • Cox F, Barsoum N, Bidartondo MI, Borja I, Lilleskov EA, Nilsson LO, Rautio P, Tubby K, Vesterdal L (2010) A leap forward in geographic scale for forest ectomycorrhizal fungi. Ann For Sci 67:200. doi:10.1051/forest/2009107

    Article  Google Scholar 

  • Cullings KW, Vogler D, Parker V, Finley S (2000) Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl Environ Microbiol 66:4988–4991. doi:10.1128/AEM.66.11.4988-4991.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekblad A, HussDanell K (1995) Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ectomycorrhiza. New Phytol 131:453–459. doi:10.1111/j.1469-8137.1995.tb03082.x

    Article  Google Scholar 

  • Ekblad A, Wallander H, Carlsson R, HussDanell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451. doi:10.1111/j.1469-8137.1995.tb03081.x

    Article  Google Scholar 

  • Favre J (1948) Les associations fongiques des haut-marais jurassiens et de quelques regions voisines. Mat. Flor. Crypt Suisse. 10

    Google Scholar 

  • Finlay R, Read D (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants 2: the uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165. doi:10.1111/j.1469-8137.1986.tb00604.x

    Article  Google Scholar 

  • Frank B (1888) Ãœber die physiologische Bedeutung der Mykorriza. Ber. dt. bot. Ges 6:248

    Google Scholar 

  • Fries N, Serck-Hanssen K, Dimberg L, Theander O (1987) Abietic acid, an activator of basidiospore germination in ectomycorrhizal species of the genus Suillus (Boletaceae). Exp Mycol 11:360–363

    Article  Google Scholar 

  • Giardina CP, Huffman S, Binkley D, Caldwell BA (1995) Alders increase soil phosphorus availability in a Douglas-fir plantation. Can J For Res 25:1652–1657. doi:10.1139/x95-179

    Article  Google Scholar 

  • Godbout C, Fortin JA (1983) Morphological features of synthesized ectomycorrhizae of Alnus crispa and A. rugosa. New Phytol 94:249–262. doi:10.1111/j.1469-8137.1983.tb04498.x

    Article  Google Scholar 

  • He X, Critchley C, Ng H, Bledsoe C (2004) Reciprocal N ((NH4+)-N-15 or (NO3-)-N-15) transfer between nonN(2)-fixing Eucalyptus maculata and N-2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol 163:629–640. doi:10.1111/j.1469-8137.2004.01137.x

    Article  Google Scholar 

  • He X, Critchley C, Ng H, Bledsoe C (2005) Nodulated N(2)-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N(2)-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp using (15)NH(4)(+) or (15)NO(3)(-) supplied as ammonium nitrate. New Phytol 167:897–912. doi:10.1111/j.1469-8137.2005.01437.x

    Article  CAS  PubMed  Google Scholar 

  • Hibbs D, DeBell D, Tarrant R (1994) The biology and management of red alder. Oregon State University Press, Corvallis

    Google Scholar 

  • Horak E (1963) Pilzökologische Untersuchungen in der subalpinen stufe (Piceetum subalpinum und Rhodoreto-Vaccinietum) der Rhatischen Alpen. Mitt. Schweiz. Anst. Forstl. Versuch. 39:1–112

    Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339. doi:10.1046/j.1469-8137.1998.00185.x

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker V (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102. doi:10.1139/b98-208

    Google Scholar 

  • Horton TR, Molina RJ, Hood K (2005) Douglas-fir ectomycorrhizae in 40-and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15:393–403. doi:10.1007/s00572-004-0339-9

    Article  CAS  PubMed  Google Scholar 

  • Huggins JA, Talbot JM, Gardes M, Kennedy PG (2014) Unlocking environmental keys to specificity: different tolerance of acidity and nitrate of Alnus-associated ectomycorrhizal fungi. Fungal Ecology 12(12):51–62

    Google Scholar 

  • Hung L, Trappe J (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro growth. Mycologia 75:234–241

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440. doi:10.1111/j.1469-8137.2007.02016.x

    Article  CAS  PubMed  Google Scholar 

  • Jargeat P, Chaumeton J-P, Navaud O, Vizzini A, Gryta H (2014) The Paxillus involutus (Boletales, Paxillaceae) complex in Europe: Genetic diversity and morphological description of the new species Paxillus cuprinus, typification of P. involutus s.s., and synthesis of species boundaries. Fungal Biol 118:12–31

    Article  CAS  PubMed  Google Scholar 

  • Jha D, Sharma G, Mishra RR (1993) Mineral nutrition in the tripartite interaction between Frankia, Glomus and Alnus at different soil phosphorus regimes. New Phytol 123:307–311. doi:10.1111/j.1469-8137.1993.tb03740.x

    Article  CAS  Google Scholar 

  • Johnson D, Gilbert L (2015) Interplant signaling through hyphal networks. New Phytol 205:1444–1453

    Google Scholar 

  • Jones MD, Phillips LA, Treu R, Ward V, Berch SM (2012) Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. Ex Loud. Var. latifola Engelm.) stands in central British Columbia. Appl Soil Ecol 60:29–40. doi:10.1016/j.apsoil.2012.01.010

    Article  Google Scholar 

  • Kennedy PG, Hill LT (2010) A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages. Fungal Ecol 3:195–204. doi:10.1016/j.funeco.2009.08.005

    Article  Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080. doi:10.1046/j.1365-2745.2003.00829.x

    Article  Google Scholar 

  • Kennedy PG, Garibay-Orijel R, Higgins LM, Angeles-Arguiz R (2011a) Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21:559–568. doi:10.1007/s00572-011-0366-2

    Article  PubMed  Google Scholar 

  • Kennedy PG, Higgins LM, Rogers RH, Weber MG (2011b) Colonization-competition tradeoffs as a mechanism driving successional dynamics in ectomycorrhizal fungal communities. PLoS ONE 6:e25126. doi:10.1371/journal.pone.0025126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Ann Rev Ecol Evol S 39:215–236. doi:10.1146/annurev.ecolsys.39.110707.173423

    Article  Google Scholar 

  • Kiers E, Rousseau R, West S, Denison R (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81. doi:10.1038/nature01931

    Article  CAS  PubMed  Google Scholar 

  • Koike T (1990) Autumn coloring, photosynthetic performance and leaf development of deciduous broad-leaved trees in relation to forest succession. Tree Physiol 7:21–32

    Article  PubMed  Google Scholar 

  • Koo CD, Molina R, Miller S (1995) Effects of light and inoculation of Frankia and Alpova diplophoeus on the tripartite symbioses development in Alnus rubra Bong. seedlings. J Korean Forest Soc 84:306–318

    Google Scholar 

  • Koo CD, Molina R, Miller S, Li CY (1996) Effects of Nitrogen and Phosphorus fertilization on ectomycorrhiza development, N-fixation and growth of red alder seedlings. J Korean Forest Soc 85:96–106

    Google Scholar 

  • Kropp BR, Trappe JM (1982) Ectomycorrhizal fungi of Tsuga heterophylla. Mycologia 74:479–488

    Article  Google Scholar 

  • Lilleskov EA, Fahey T, Horton TR, Lovett G (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115. doi:10.2307/2680124

    Article  Google Scholar 

  • Malajczuk N, Molina R, Trappe J (1982) Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol 91:467–482

    Article  Google Scholar 

  • Massicotte HB, Molina RJ, Luoma DL, Smith JE (1994) Biology of the ectomycorrhizal genus, Rhizopogon II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in monoculture and dual culture. New Phytol 126:677–690. doi:10.1111/j.1469-8137.1994.tb02962.x

    Article  Google Scholar 

  • Massicotte HB, Molina RJ, Tackaberry L, Smith JE, Amaranthus MP (1999) Diversity and host specificity of ectomycorrhizal fungi retrieved from three adjacent forest sites by five host species. Can J Bot 77:1053–1076. doi:10.1139/b99-115

    Google Scholar 

  • Masui K (1926) A study of the ectotrophic mycorrhiza of Alnus. Mem. Coll Sci Kyoto Imp Univ B 2:189–209

    Google Scholar 

  • Mejstrik V, Benecke U (1969) The ectotrophic mycorrhizas of Alnus viridis (Chaix.) D.C. and their significance in respect to phosphorus uptake. New Phytol 68:141–149. doi:10.1111/j.1469-8137.1969.tb06427.x

    Article  Google Scholar 

  • Miller S, Koo CD, Molina R (1991) Characterization of red alder Ectomycorrhizae—a preface to monitoring belowground ecological responses. Can J Bot 69:516–531. doi:10.1139/b91-071

    Article  Google Scholar 

  • Miller S, Koo CD, Molina R (1992) Early colonization of red alder and Douglas fir by ectomycorrhizal fungi and Frankia in soils from the Oregon coast range. Mycorrhiza 2:53–61. doi:10.1007/BF00203250

    Article  Google Scholar 

  • Miller S, Torres P, McClean TM (1994) Persistence of basidiospores and sclerotia of ectomycorrhizal fungi and Morchella in soil. Mycologia 86:89–95. doi:10.2307/3760722

    Article  Google Scholar 

  • Molina R (1979) Pure culture synthesis and host specificity of red alder mycorrhizae. Can J Bot 57:1223–1228

    Article  Google Scholar 

  • Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59:325–334

    Article  Google Scholar 

  • Molina RJ, Trappe JM (1982) Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytol 90:495–509. doi:10.1111/j.1469-8137.1982.tb04482.x

    Article  Google Scholar 

  • Molina RJ, Massicotte HB, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical applications. In: Allen MF (ed) Mycorrhizal functioning, an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Molina R, Myrold D, Li CY (1994) Root symbioses of red alder: technological opportunities for enhanced regeneration and soil improvement. In: Hibbs D, DeBell D, Tarrant R (eds) The biology and management of red alder. Oregon State University Press, Corvallis, pp 23–46

    Google Scholar 

  • Moreau P, Peintner U, Gardes M (2006) Phylogeny of the ectomycorrhizal mushroom genus Alnicola (Basidiomycota, Cortinariaceae) based on rDNA sequences with special emphasis on host specificity and morphological characters. Mol Phylogenet Evol 38:794–807. doi:10.1016/j.ympev.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707. doi:10.1890/03-0373

    Article  Google Scholar 

  • Neal J, Trappe J, Lu K, Bollen W (1968) Some ectotrophic mycorrhizae of Alnus rubra. In: Trappe J, Franklin J, Tarrant R, Hansen G (eds) Biology of Alder. USDA Forest Service, Portland, pp 179–184

    Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants—their functioning and ecological significance. Adv Ecol Res 18:243–270. doi:10.1016/S0065-2504(08)60182-8

    Article  Google Scholar 

  • Pritsch K, Garbaye J (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann For Sci 68:25–32. doi:10.1007/s13595-010-0004-8

    Article  Google Scholar 

  • Pritsch K, Munch J, Buscot F (1997) Identification and differentiation of mycorrhizal isolates of black alder by sequence analysis of the ITS region. Mycorrhiza 10:87–93. doi:10.1007/s005720000063

    Article  Google Scholar 

  • Pritsch K, Courty PE, Churin J, Cloutier-Hurteau B, Ali MA, Damon C, Duchemin M, Egli S, Ernst J, Fraissinet-Tachet L, Kuhar F, Legname E, Marmeisse R, Mueller A, Nikolova P, Peter M, Plassard C, Richard F, Schloter M, Selosse M, Franc A, Garbaye J (2011) Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza 21:589–600. doi:10.1007/s00572-011-0364-4

    Article  CAS  PubMed  Google Scholar 

  • Richard F, Selosse M, Gardes M (2009) Facilitated establishment of Quercus ilex in shrub-dominated communities within a Mediterranean ecosystem: do mycorrhizal partners matter? FEMS Microbiol Ecol 68:14–24. doi:10.1111/j.1574-6941.2009.00646.x

    Article  CAS  PubMed  Google Scholar 

  • Rochet J, Moreau P, Manzi S, Gardes M (2011) Comparative phylogenies and host specialization in the alder ectomycorrhizal fungi Alnicola, Alpova and Lactarius (Basidiomycota) in Europe. BMC Evol Biol 11:40. doi:10.1186/1471-2148-11-40

    Article  PubMed  PubMed Central  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina RJ (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582. doi:10.1038/41557

    Article  CAS  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology, and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Singer R (1950) New and interesting Basidiomycetes VIII. Sydowia 4:130–157

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Smith ME, Douhan GW, Fremier AK, Rizzo DM (2009) Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus species. New Phytol 182:295–299. doi:10.1111/j.1469-8137.2009.02801.x

    Article  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192:699–712. doi:10.1111/j.1469-8137.2011.03844.x

    Article  PubMed  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE 5:e13324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suvi T, Tedersoo L, Abarenkov K, Beaver K, Gerlach J, Koljalg U (2010) Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species. Mycologia 102:522–533. doi:10.3852/09-147

    Article  PubMed  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490. doi:10.1111/j.1469-8137.2008.02561.x

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Ostonen I, Polme S (2009) Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. New Phytol 182:727–735. doi:10.1111/j.1469-8137.2009.02792.x

    Article  PubMed  Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Berch SM (2010) Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J Ecol 98:429–439. doi:10.1111/j.1365-2745.2009.01624.x

    Article  CAS  Google Scholar 

  • Tjepkema JD, Schwintzer CR, Benson DR (1986) Physiology of actinorhizal nodules. In: Briggs WR (ed) Ann Rev Plant Physiol 37:209–232. doi:10.1146/annurev.pp.37.060186.001233

  • Townsend CR, Begon M, Harper JL (2008) Essentials of ecology. Blackwell, Oxford

    Google Scholar 

  • Trappe JM (1964) Mycorrhizal hosts and distribution of Cenococcum graniforme. Lloydia 27:100–106

    Google Scholar 

  • Trappe JM (1975) A revision of the genus Alpova with notes on Rhizopogon and Melanogastraceae. Nova Hedgwigia 51:279–309

    Google Scholar 

  • Trappe JM, Fogel R (1977) Ecosystematic functions of mycorrhizae. Colorado State Univ Range Sci Dept Sci Ser 26:205–214

    CAS  Google Scholar 

  • Trudell SA, Edmonds RL (2004) Macrofungus communities correlate with moisture and nitrogen abundance in two old-growth forests, Olympic National Park, Washington. Can J Bot 82:781–800. doi:10.1139/B04-057

    Article  CAS  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447. doi:10.1111/j.1469-8137.2007.02173.x

    Article  PubMed  Google Scholar 

  • Uliassi DD, Ruess RW (2002) Limitations to symbiotic nitrogen fixation in primary succession on the Tanana River floodplain. Ecology 83:88–103. doi:10.2307/2680123

    Article  Google Scholar 

  • van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150. doi:10.1111/j.1365-2745.2009.01570.x

    Article  Google Scholar 

  • Walker JKM, Cohen H, Higgins L, Kennedy PG (2014) Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tri-partite symbiosis. New Phytol 102:287–296

    Google Scholar 

  • Yamanaka T, Li CY, Bormann BT, Okabe H (2003) Tripartite associations in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254:179–186. doi:10.1023/A:1024938712822

    Article  CAS  Google Scholar 

  • Yarwood SA, Bottomley PJ, Myrold DD (2010) Soil microbial communities associated with Douglas-fir and red alder stands at high- and low-productivity forest sites in Oregon, USA. Microb Ecol 60:606–617. doi:10.1007/s00248-010-9675-9

    Article  PubMed  Google Scholar 

  • Zou X, Binkley D, Caldwell BA (1995) Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in contrasting forests. Soil Sci Soc Am J 59:1452–1458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank T. Horton, S. Trudell, and two anonymous reviewers for a number of constructive suggestions on previous drafts of this manuscript. The authors also gratefully acknowledge the intellectual encouragement of R. Molina, who pioneered much of the work on host specificity in the Alnus ECM system. Financial support was provided by the National Science Foundation (DEB #: 1020735 to PGK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Kennedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kennedy, P.G., Walker, J.K.M., Bogar, L.M. (2015). Interspecific Mycorrhizal Networks and Non-networking Hosts: Exploring the Ecology of the Host Genus Alnus . In: Horton, T. (eds) Mycorrhizal Networks. Ecological Studies, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7395-9_8

Download citation

Publish with us

Policies and ethics