Skip to main content

Connexins: Bridging the Gap Between Cancer Cell Communication in Glioblastoma

  • Chapter
Book cover Intercellular Communication in Cancer

Abstract

Despite concerted clinical and research efforts, glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains uniformly lethal. Like other advanced cancers, GBM is characterized by extensive cellular heterogeneity and is organized in a hierarchy with self-renewing, therapeutically resistant cancer stem cells (CSCs) at the apex. While communication between GBM tumor cells and their surrounding stroma supports tumor survival and expansion, the mechanisms behind direct cell-cell communication and its contribution to tumor growth have yet to be fully elucidated. In particular, the biological importance of intercellular communication between GBM tumor cells, including CSCs and non-stem tumor cells (NSTCs) has yet to be determined. Gap junctions (GJs) are specialized structures, composed of connexin proteins, allowing for the diffusion of small molecules and ions directly between the cytoplasm of adjacent cells, enabling them to respond to each other and external stimuli rapidly and coordinately. Connexins have been found to help promote tumor cell growth, invasiveness, and tumorigenicity, making them attractive anti-tumor targets. However a complete understanding of the function of connexins and GJs in GBM remains an area of active investigation. Here we discuss recent advances in connexin function as they relate to our understanding of cellular communication and malignancy in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoyert DL, Xu JQ (2011) Deaths: preliminary data for 2011, vol 61, 6th edn, National vital statistics reports. National Center for Health Statistics, Hyattsville

    Google Scholar 

  2. Buckner JC, Brown PD, O’Neill BP et al (2007) Central nervous system tumors. Mayo Clin Proc 82:1271–1286. doi:10.4065/82.10.1271

    Article  PubMed  Google Scholar 

  3. Gourine AV, Kasymov V, Marina N et al (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575. doi:10.1126/science.1190721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772

    Article  CAS  PubMed  Google Scholar 

  5. Okita Y, Narita Y, Miyakita Y et al (2012) Pathological findings and prognostic factors in recurrent glioblastomas. Brain Tumor Pathol 29:192–200. doi:10.1007/s10014-012-0084-2

    Article  CAS  PubMed  Google Scholar 

  6. Grossman SA, Ye X, Piantadosi S et al (2010) Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res 16:2443–2449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wilson TA, Karajannis MA, Harter DH (2014) Glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int 5:64. doi:10.4103/2152-7806.132138

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593

    Article  CAS  PubMed  Google Scholar 

  9. Bonavia R, Inda M-M, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71:4055–4060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708. doi:10.1056/NEJMoa1308573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Khasraw M, Grant R, Wheeler H, Pavlakis N (2014) Antiangiogenic therapy for high-grade glioma. Cochrane Database Syst Rev 9, CD008218

    PubMed  Google Scholar 

  12. Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143. doi:10.1038/nrc3184

    CAS  PubMed  Google Scholar 

  14. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728. doi:10.1016/j.stem.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  15. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  16. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. doi:10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Li Y, Yu T-S et al (2012) A restricted cell population propagates glioblastoma growth following chemotherapy. Nature 488:522–526. doi:10.1038/nature11287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Heddleston JM, Li Z, McLendon RE et al (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284. doi:10.4161/cc.8.20.9701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hjelmeland AB, Wu Q, Heddleston JM et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Flavahan WA, Wu Q, Hitomi M et al (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16:1373–1382. doi:10.1038/nn.3510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lee J, Kotliarova S, Kotliarov Y et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403. doi:10.1016/j.ccr.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  22. Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia 59:1169–1180. doi:10.1002/glia.21136

    Article  PubMed  Google Scholar 

  23. Payne LS, Huang PH (2013) The pathobiology of collagens in glioma. Mol Cancer Res 11:1129–1140

    Article  CAS  PubMed  Google Scholar 

  24. Wu A, Wei J, Kong L-Y et al (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Baril P, Gangeswaran R, Mahon PC et al (2006) Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the [beta]4 integrin and the PI3k pathway. Oncogene 26:2082–2094

    Article  PubMed  Google Scholar 

  26. Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O et al (2014) MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther 7:1327–1338. doi:10.2147/OTT.S61562

    PubMed Central  PubMed  Google Scholar 

  27. Warner AE, Guthrie SC, Gilula NB (1984) Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311:127–131. doi:10.1038/311127a0

    Article  CAS  PubMed  Google Scholar 

  28. Beauchamp P, Desplantez T, McCain ML et al (2012) Electrical coupling and propagation in engineered ventricular myocardium with heterogeneous expression of connexin43. Circ Res 110:1445–1453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Allison DW, Ohran AJ, Stobbs SH et al (2006) Connexin-36 gap junctions mediate electrical coupling between ventral tegmental area GABA neurons. Synapse 60:20–31. doi:10.1002/syn.20272

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez-Nieto D, Li L, Kohler A et al (2012) Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood 119:5144–5154. doi:10.1182/blood-2011-07-368506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kamiya K, Yum SW, Kurebayashi N et al (2014) Assembly of the cochlear gap junction macromolecular complex requires connexin 26. J Clin Invest 124:1598–1607. doi:10.1172/JCI67621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Stains JP, Civitelli R (2005) Gap junctions in skeletal development and function. Biochim Biophys Acta 1719:69–81. doi:10.1016/j.bbamem.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  33. Kihara AH, Santos TO, Osuna-Melo EJ et al (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28:39–52. doi:10.1016/j.ijdevneu.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  34. Hervé J-C, Derangeon M (2013) Gap-junction-mediated cell-to-cell communication. Cell Tissue Res 352:21–31. doi:10.1007/s00441-012-1485-6

    Article  PubMed  Google Scholar 

  35. Orellana JA, Martinez AD, Retamal MA (2013) Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology 75:567–582. doi:10.1016/j.neuropharm.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  36. Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459. doi:10.1038/15693

    Article  CAS  PubMed  Google Scholar 

  37. Maeda S, Tsukihara T (2011) Structure of the gap junction channel and its implications for its biological functions. Cell Mol Life Sci 68:1115–1129. doi:10.1007/s00018-010-0551-z

    Article  CAS  PubMed  Google Scholar 

  38. Bruzzone S, Guida L, Zocchi E et al (2000) Connexin 43 hemichannels mediate Ca2+ -regulated transmembrane NAD+ fluxes in intact cells. FASEB J 15:10–12. doi:10.1096/fj.00-0566fje.

  39. Cherian PP, Siller-Jackson AJ, Gu S et al (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Karadima G, Koutsis G, Raftopoulou M et al (2014) Four novel connexin 32 mutations in X-linked Charcot–Marie–Tooth disease. Phenotypic variability and central nervous system involvement. J Neurol Sci 341:158–161. doi:10.1016/j.jns.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  41. Arita K, Akiyama M, Aizawa T et al (2006) A novel N14Y mutation in Connexin26 in keratitis-ichthyosis-deafness syndrome: analyses of altered Gap junctional communication and molecular structure of N terminus of mutated connexin26. Am J Pathol 169:416–423. doi:10.2353/ajpath.2006.051242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Paznekas WA, Boyadjiev SA, Shapiro RE et al (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418. doi:10.1086/346090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Loewenstein WR, Kanno Y (1967) Intercellular communication and tissue growth: I. Cancerous growth. J Cell Biol 33:225–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jamakosmanović A, Loewenstein WR (1968) Intercellular communication and tissue growth: III. Thyroid cancer. J Cell Biol 38:556–561

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kanno Y, Matsui Y (1968) Cellular uncoupling in cancerous stomach epithelium. Nature 218:775–776. doi:10.1038/218775b0

    Article  CAS  PubMed  Google Scholar 

  46. Hirschi K, Xu C, Tsukamoto T, Sager R (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7:861–870

    CAS  PubMed  Google Scholar 

  47. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. doi:10.1172/JCI39104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ezumi K, Yamamoto H, Murata K et al (2008) Aberrant expression of connexin 26 is associated with lung metastasis of colorectal cancer. Clin Cancer Res 14:677–684

    Article  CAS  PubMed  Google Scholar 

  49. Ito A, Katoh F, Kataoka TR et al (2000) A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest 105:1189–1197. doi:10.1172/JCI8257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Elzarrad MK, Haroon A, Willecke K et al (2008) Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med 6:20. doi:10.1186/1741-7015-6-20

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lin JH-C, Takano T, Cotrina ML et al (2002) Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci 22:4302–4311

    CAS  PubMed  Google Scholar 

  52. Cai J, Cheng A, Luo Y et al (2004) Membrane properties of rat embryonic multipotent neural stem cells. J Neurochem 88:212–226. doi:10.1046/j.1471-4159.2003.02184.x

    Article  CAS  PubMed  Google Scholar 

  53. Cheng A, Tang H, Cai J et al (2004) Gap junctional communication is required to maintain mouse cortical neural progenitor cells in a proliferative state. Dev Biol 272:203–216. doi:10.1016/j.ydbio.2004.04.031

    Article  CAS  PubMed  Google Scholar 

  54. Hartfield EM, Rinaldi F, Glover CP et al (2011) Connexin 36 expression regulates neuronal differentiation from neural progenitor cells. PLoS One 6, e14746. doi:10.1371/journal.pone.0014746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhou JZ, Jiang JX (2014) Gap junction and hemichannel-independent actions of connexins on cell and tissue functions – an update. FEBS Lett 588:1186–1192. doi:10.1016/j.febslet.2014.01.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Elias LAB, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448:901–907. doi:10.1038/nature06063

    Article  CAS  PubMed  Google Scholar 

  57. Elias LAB, Turmaine M, Parnavelas JG, Kriegstein AR (2010) Connexin 43 mediates the tangential to radial migratory switch in ventrally derived cortical interneurons. J Neurosci 30:7072–7077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Rinaldi F, Hartfield EM, Crompton LA et al (2014) Cross-regulation of connexin43 and [beta]-catenin influences differentiation of human neural progenitor cells. Cell Death Dis 5:e1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kunze A, Congreso MR, Hartmann C et al (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci 106:11336–11341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Soroceanu L, Manning TJ, Sontheimer H (2001) Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33:107–117. doi:10.1002/1098-1136(200102)33:2<107::AID-GLIA1010>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  61. Gielen PR, Aftab Q, Ma N et al (2013) Connexin43 confers temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway. Neuropharmacology 75:539–548. doi:10.1016/j.neuropharm.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  62. Munoz JL, Rodriguez-Cruz V, Greco SJ et al (2014) Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 5, e1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sin W-C, Crespin S, Mesnil M (2012) Opposing roles of connexin43 in glioma progression. Biochim Biophys Acta 1818:2058–2067. doi:10.1016/j.bbamem.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  64. Yu S-C, Xiao H-L, Jiang X-F et al (2012) Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells 30:108–120. doi:10.1002/stem.1685

    Article  CAS  PubMed  Google Scholar 

  65. Hitomi M, Deleyrolle LP, Mulkearns-Hubert E, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG, Goan W, Hale JS, Alvarado AG, Zhang A, Rohaus M, Oli M, Vedam-Mai V, Fortin JM, Futch HS, Griffith B, Wu Q, Xia C, Gong X, Ahluwalia MS, Rich JN, Reynolds BA, Lathia JD (2015) Differential connexin function enhances self-renewal in glioblastoma. Cell Rep 11(7):1031–1042

    Article  Google Scholar 

  66. Mancuso M, Pasquali E, Leonardi S et al (2011) Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo. Oncogene 30:4601–4608

    Article  CAS  PubMed  Google Scholar 

  67. Doll R, Langman MJ, Shawdon HH (1968) Treatment of gastric ulcer with carbenoxolone: antagonistic effect of spironolactone. Gut 9:42–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Nahab F, Wittevrongel L, Ippolito D et al (2011) An open-label, single-dose, crossover study of the pharmacokinetics and metabolism of two oral formulations of 1-octanol in patients with essential tremor. Neurotherapeutics 8:753–762. doi:10.1007/s13311-011-0045-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Jensen K, Patel A, Klubo-Gwiezdzinska J et al (2011) Inhibition of gap junction transfer sensitizes thyroid cancer cells to anoikis. Endocr Relat Cancer 18:613–626

    Article  CAS  PubMed  Google Scholar 

  70. Moosavi M, Moasses Ghafary S, Asvadi-Kermani I et al (2011) Carbenoxolone induces apoptosis and inhibits survivin and survivin-ΔEx3 genes expression in human leukemia K562 cells. DARU J Pharm Sci 19:455–461

    CAS  Google Scholar 

  71. Yulyana Y, Endaya BB, Ng WH et al (2013) Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of Gap junction intercellular communication in human glioma. Stem Cells Dev 22:1870–1882. doi:10.1089/scd.2012.0529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G et al (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci 109:9071–9076

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors wish to disclose that they do not have any relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Lathia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sinyuk, M., Lathia, J.D. (2015). Connexins: Bridging the Gap Between Cancer Cell Communication in Glioblastoma. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_2

Download citation

Publish with us

Policies and ethics