Advertisement

Solar Hydrogen Production

  • Athanasios G. KonstandopoulosEmail author
  • Chrysoula Pagkoura
  • Dimitrios A. Dimitrakis
  • Souzana Lorentzou
  • George P. Karagiannakis
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 5)

Abstract

This chapter summarizes the current status of solar-aided hydrogen production technologies, with special emphasis on high temperature thermochemical concepts. The required high temperatures are achieved via concentrated solar irradiation through the respective systems, e.g., solar towers and solar dishes. Customized, efficient, and robust solar reactor concepts are important to ensure optimum coupling of the thermochemical phenomenon with the solar source. Of fundamental importance for such thermochemical processes is the development of active materials and key components. Some of the most studied and promising active materials are presented in this chapter along with their relevant advantages and challenges. Solar hydrogen (/fuels) production is found to constitute an in principle promising alternative and supplementary solution to currently employed renewables. Nevertheless, further development is required to increase solar-to-fuel efficiencies and to overcome long-term stability issues. Favorable solutions strongly depend on the identification of more active and robust materials as well as on the definition of solar reactor designs that will ensure optimum exploitation of solar irradiation.

Keywords

Solar hydrogen Hydrogen production Solar fuels Concentrated irradiation Thermochemical processes Water-splitting solar reactors 

Notes

Acknowledgments

We thank the European Research Council (ERC) and the General Secretariat of Research and Technology (GSRT) for supporting this work through the ERC Advanced Grant Project ARMOS (ERC-2010-AdG 268049-ARMOS).

References

  1. 1.
    Smalley RE. Future global energy prosperity: the terawatt challenge. Mater Matters Bull. 2005;30:412–7.Google Scholar
  2. 2.
    BP plc. Sustainability review 2013. 2014. (http://www.bp.com/content/dam/bp/pdf/sustainability/groupreports/ BP_Sustainability_Review_2013.pdf). (Last accessed on Sept 2015).
  3. 3.
    International Energy Agency. Medium-term renewable energy market report 2014: market analysis and forecasts to 2020. 2014. ISBN 978-92-64-21821-5. OECD/IEA, Paris.Google Scholar
  4. 4.
    OECD/International Energy Agency. World Energy Investment Outlook. 2014. International Energy Agency, Paris. (https://www.iea.org/publications/freepublications/publication/WEIO2014.pdf. Last accessed Sept 2015).
  5. 5.
    OECD/International Energy Agency. Technology roadmap solar thermal electricity. 2014. ISBN 978-92-64-21821-5. OECD/IEA, Paris.Google Scholar
  6. 6.
    Hirsch D, Epstein M, Steinfeld A. The solar thermal decarbonization of natural gas. Int J Hydrog Energy. 2001;26:1023–33.CrossRefGoogle Scholar
  7. 7.
    Richter C, Teske S, Short R. Concentrating solar power global outlook 09. 2009. Greenpeace International. (https://energypedia.info/wiki/Greenpeace_International_Concentrating_Solar_Power_Global_Outlook. Open access material: https://energypedia.info/wiki/File:Greenpeace_International_Technologies_CSP.png).
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Image by Schlaich Bergermann und Partner. By Lumos3 at en.wikipedia [Public domain], from Wikimedia Commons (http://commons.wikimedia.org/wiki/File:EuroDishSBP_front.jpg).
  12. 12.
    CSP World Map Website: http://www.cspworld.org. (Last accessed on Sept 2015).
  13. 13.
    Diver RB, Fish JD, Levitan R, Levy M, Meirovitch E, Rosin H, Paripatyadar SA, Rich-ardson JT. Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport. Sol Energy. 1992;48(1):21–30.CrossRefGoogle Scholar
  14. 14.
    Epstein M. Reforming technology for syngas production. IAEA-TECDOC-923, Ja-karta; 1995. p. 165–78.Google Scholar
  15. 15.
    Buck R, Muir JF, Hogan RE. Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project. Sol Energy Mater. 1991;24(1–4):449–63.CrossRefGoogle Scholar
  16. 16.
    Pagliaro M, Kostandopoulos AG. Solar hydrogen: fuel of the future. Cambridge, UK: Royal Society of Chemistry Publishing; 2012. ISBN 978-1-84973-195-9.Google Scholar
  17. 17.
    Kodama T, Gokon N. Thermochemical cycles for high-temperature solar hydrogen production. Chem Rev. 2007;107(10):4048–77.CrossRefPubMedGoogle Scholar
  18. 18.
    Dincer I, Joshi AS. Solar based hydrogen production systems. Springer Briefs in Energy. 2014. ISBN 978-1-4614-7430-2. Springer-Verlag New York.Google Scholar
  19. 19.
    Pregger T, Graf D, Krewitt W, Sattler C, Roeb M, Möller S. Prospects of solar thermal hydrogen production processes. Int J Hydrog Energy. 2009;34(10):4256–67.CrossRefGoogle Scholar
  20. 20.
    Bilgen E, Ducarroir M, Foex M, Sebieude F, Trombe F. Use of solar energy for direct and two-step water decomposition cycles. Int J Hydrog Energy. 1977;2(3):251–7.CrossRefGoogle Scholar
  21. 21.
    Zini G, Tartarini P. Solar hydrogen energy systems science and technology for the hydrogen economy. Italy: Springer-Verlag Italia; 2012. ISBN 978-88-470-1997-3.CrossRefGoogle Scholar
  22. 22.
    Epstein M. Solar thermal reforming of methane, 2nd SFERA Winter School: solar fuels & materials. Zürich; 2011. p. 125–168.Google Scholar
  23. 23.
    Anikeev VI, Parmon VN, Kirillov VA, Zamaraev KI. Theoretical and experimental studies of solar catalytic power plants based on reversible reactions with participation of methane and synthesis gas. Int J Hydrog Energy. 1990;15(4):275–86.CrossRefGoogle Scholar
  24. 24.
    Böhmer M, Langnickel U, Sanchez M. Solar steam reforming of methane. Sol Energy Mater. 1991;24:441–8.CrossRefGoogle Scholar
  25. 25.
    Möller S. SOLREF – solar steam reforming, solar-SMR. Technology platform operation review days, Brussels; 8–9 Dec 2005.Google Scholar
  26. 26.
    Hinkley J. Solar Fuels Research at CSIRO. Presentation. December 20, 2013. http://www.iitj.ac.in/CSP/material/20dec/fuels.pdf. Last accessed Sept 2015.
  27. 27.
    Radwan AM. An overview on gasification of biomass for production of hydrogen rich gas. Der Chem Sin. 2012;3(2):323–35.Google Scholar
  28. 28.
    Gregg DW, Aiman WR, Otsuki HH, Thorsness CB. Solar coal gasification. Sol Energy. 1980;24(3):313–21.CrossRefGoogle Scholar
  29. 29.
    Puig-Arnavat M, Tora EA, Bruno JC, Coronas A. State of the art on reactor designs for solar gasification of carbonaceous feedstock. Sol Energy. 2013;97:67–84.CrossRefGoogle Scholar
  30. 30.
    Gregg DW, Taylor RW, Campbell JH, Taylor JR, Cotton A. Solar gasification of coal, activated carbon, coke and coal and biomass mixtures. Sol Energy. 1980;25:353–64.CrossRefGoogle Scholar
  31. 31.
    Taylor RW, Berjoan R, Coutures JP. Solar gasification of carbonaceous materials. Sol Energy. 1983;30:513–25.CrossRefGoogle Scholar
  32. 32.
    Gokon N, Izawa T, Abe T, Kodama T. Steam gasification of coal cokes in an internally circulating fluidized bed of thermal storage material for solar thermochemical processes. Int J Hydrog Energy. 2014;39(21):11082–93.CrossRefGoogle Scholar
  33. 33.
    Melchior T, Perkins C, Lichty P, Weimer AW, Steinfeld A. Solar-driven biochar gasification in a particle-flow reactor. Chem Eng Process Process Intensif. 2009;48:1279–87.CrossRefGoogle Scholar
  34. 34.
    Kodama T, Gokon N, Enomoto S, Itoh S, Hatamachi T. Coal coke gasification in a windowed solar chemical reactor for beam-down optics. J Dol Energy Eng. 2010;132(4):041004.CrossRefGoogle Scholar
  35. 35.
    Zedtwitz P, Petrasch J, Trommer D, Steinfeld A. Hydrogen production via the solar thermal decarbonization of fossil fuels. Sol Energy. 2006;80:1333–7.CrossRefGoogle Scholar
  36. 36.
    Abanades A, Rubbia C, Salmieri D. Thermal cracking of methane into hydrogen for a CO2-free utilization of natural gas. Int J Hydrog Energy. 2013;38(20):8491–6.CrossRefGoogle Scholar
  37. 37.
    Abanades S, Kimura H, Otsuka H. Hydrogen production from CO2-free thermal decomposition of methane: design and on-sun testing of a tube-type solar thermochemical reactor. Fuel Process Technol. 2014;122:153–62.CrossRefGoogle Scholar
  38. 38.
    Amin AM, Croiset E, Epling W. Review of methane catalytic cracking for hydrogen production. Int J Hydrog Energy. 2011;36(4):2904–35.CrossRefGoogle Scholar
  39. 39.
    Abbas HF, Wan Daud WMA. Hydrogen production by methane decomposition: a review. Int J Hydrog Energy. 2010;35(3):1160–90.CrossRefGoogle Scholar
  40. 40.
    Abbas HF, Wan Daud WMA. Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies. Int J Hydrog Energy. 2010;35(22):12268–76.CrossRefGoogle Scholar
  41. 41.
    Kogan M, Kogan A. Production of hydrogen and carbon by solar thermal methane splitting I The unseeded reactor. Int J Hydrog Energy. 2003;28(11):1187–98.CrossRefGoogle Scholar
  42. 42.
    Hirsch D, Steinfeld A. Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. Int J Hydrog Energy. 2004;29(1):47–55.CrossRefGoogle Scholar
  43. 43.
    Rodat S, Abanades S, Flamant G. Experimental evaluation of indirect heating tubular reactors for solar methane pyrolysis. Int J Chem React Eng. 2010;8: Art No. 25.Google Scholar
  44. 44.
    Rodat S, Abanades S, Sans JL, Flamant G. A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting. Int J Hydrog Energy. 2010;35(15):7748–58.CrossRefGoogle Scholar
  45. 45.
    Rodat S, Abanades S, Flamant G. Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype. Sol Energy. 2011;85(4):645–52.CrossRefGoogle Scholar
  46. 46.
    Muradov N, Smith F, Bockerman G, Scammon K. Thermocatalytic decomposition of natural gas over plasma-generated carbon aerosols for sustainable production of hydrogen and carbon. Appl Catal Gen. 2009;365(2):292–300.CrossRefGoogle Scholar
  47. 47.
    Steinfeld A, Kirillov V, Kuvshinov G, Mogilnykh Y, Reller A. Production of filamentous carbon and hydrogen by solarthermal catalytic cracking of methane. Chem Eng Sci. 1997;52(20):3599–603.CrossRefGoogle Scholar
  48. 48.
    Lapicque F, Lédé J, Villermaux J. Design and optimization of a reactor for high temperature dissociation of water and carbon dioxide using solar energy. Chem Eng Sci. 1986;41(4):677–84.CrossRefGoogle Scholar
  49. 49.
    Bamberger CE. Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics. 1978;18(3):170–83.CrossRefGoogle Scholar
  50. 50.
    McQuillan BW, Brown LC, Besenbruch GE, Tolman R, Cramer T, Russ BE, Vermillion BA, Earl B, Hsieh HT, Chen Y, Kwan K, Diver R, Siegal N, Weimer A, Perkins C, Lewandowski A. High efficiency generation of hydrogen fuels using solar thermochemical splitting of water. Annual report for the Period 10/01/2003 through 09/30/2004. No GA-A24972. General Atomics. 2010.Google Scholar
  51. 51.
    Funk JE, Reinstorm RM. Industrial and engineering chemistry process design and development. Ind Eng Chem Process Des Dev. 1966;5(3):336–42.CrossRefGoogle Scholar
  52. 52.
    Abraham BM, Shhreiner F. General principles underlying chemical cycles which thermally decompose water into the elements. Ind Eng Chem Fundam. 1974;13(4):305–10.CrossRefGoogle Scholar
  53. 53.
    Nakamura T. Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy. 1977;19(5):467–75.CrossRefGoogle Scholar
  54. 54.
    Agrafiotis CC, Pagkoura C, Zygogianni A, Karagiannakis G, Kostoglou M, Konstandopoulos AG. Hydrogen production via solar-aided water splitting thermochemical cycles: combustion synthesis and preliminary evaluation of spinel redox-pair materials. Int J Hydrog Energy. 2012;37(11):8964–80.CrossRefGoogle Scholar
  55. 55.
    Agrafiotis C, Zygogianni A, Pagkoura C, Kostoglou M, Konstandopoulos AG. Hydrogen production via solar-aided water splitting thermochemical cycles with nickel ferrite: experiments and modeling. AIChE J. 2013;59(4):1213–25.CrossRefGoogle Scholar
  56. 56.
    Fresno F, Fernández-Saavedra R, Gómez-Mancebo MB, Vidal A, Sánchez M, Rucandio MI, Quejido AJ, Romero M. Solar hydrogen production by Two-step thermochemical cycles: evaluation of the activity of commercial ferrites. Int J Hydrog Energy. 2009;34(7):2918–24.CrossRefGoogle Scholar
  57. 57.
    Charvin P, Abanades S, Flamant G, Lemort F. Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production. Energy. 2007;32:1124–33.CrossRefGoogle Scholar
  58. 58.
    Tamaura Y, Kaneko H. Oxygen-releasing step of ZnFe2O4/(ZnO + Fe3O4)-system in air using concentrated solar energy for solar hydrogen production. Sol Energy. 2005;78(5):616–22.CrossRefGoogle Scholar
  59. 59.
    Schunk LO, Haeberling P, Wepf S, Wuillemin D, Meier A, Steinfeld A. A receiver-reactor for the solar thermal dissociation of zinc oxide. J Dol Energy Eng. 2008;130(2):021009-1–-6.Google Scholar
  60. 60.
    Charvin P, Abanades S, Neveu P, Lemont F, Flamant G. Dynamic modeling of a volumetric solar reactor for volatile metal oxide reduction. Chem Eng Res Des. 2008;86(11):1216–22.CrossRefGoogle Scholar
  61. 61.
    Wieckert C, Frommherz U, Kräupl S, Guillot E, Olalde G, Epstein M, Santén S, Osinga T, Steinfeld A. A 300kW solar chemical pilot plant for the carbothermic production of zinc. J Dol Energy Eng. 2006;129(2):190–6.CrossRefGoogle Scholar
  62. 62.
    Perkins C, Lichty PR, Weimer AW. Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int J Hydrog Energy. 2008;33(2):499–510.CrossRefGoogle Scholar
  63. 63.
    Roeb M, Säck JP, Rietbrock P, Prahl C, Schreiber H, Neises M, de Oliveira L, Graf D, Ebert M, Reinalter W, Meyer-Grünefeldt M, Sattler C, Lopez A, Vidal A, Elsberg A, Stobbe P, Jones D, Steele A, Lorentzou S, Pagkoura C, Zygogianni A, Agrafiotis C, Konstandopoulos AG. Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol Energy. 2011;85(4):634–44.CrossRefGoogle Scholar
  64. 64.
    Perret R. Solar thermochemical hydrogen production research (STCH): thermochemical cycle selection and investment priority. Sandia National Laboratories Report: 1–117. SAND2011-3622. 2011. Sandia National Laboratories, Albuquerque (http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/solar_thermo_h2.pdf. Last accessed Sept 2015).
  65. 65.
    Scheffe JR, Steinfeld A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. Mater Today. 2014;17(7):341–8.CrossRefGoogle Scholar
  66. 66.
    Palumbo RD, Fletcher EA. High temperature solar electro-thermal processing III zinc from zinc oxide at 1200-using a non-consumable anode. Energy. 1988;13(4):319–32.CrossRefGoogle Scholar
  67. 67.
    Scheffe JR, Li J, Weimer AW. A spinel ferrite/hercynite water-splitting redox cycle. Int J Hydrog Energy. 2010;35(8):3333–40.CrossRefGoogle Scholar
  68. 68.
    Chueh WC, Haile SM. A thermochemical study of ceria: exploiting an Old material for new modes of energy conversion and CO2 mitigation. Philos Trans A. 2010;368:3269–94.CrossRefGoogle Scholar
  69. 69.
    McDaniel AH, Ambrosini A, Coker EN, Miller JE, Chueh WC, OHayre R, Tong J. Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production. Energy Procedia. 2014;49:2009–18.CrossRefGoogle Scholar
  70. 70.
    Muhich CL, Evanko BW, Weston KC, Lichty P, Liang X, Martinek J, Musgrave CB, Weimer AW. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science. 2013;341(6145):540–2.CrossRefPubMedGoogle Scholar
  71. 71.
    Eyring L. In: Meyer G, Morss LR, editors. The binary lanthanide oxides: synthesis and identification, synthesis of lanthanide and actinide compounds. Dordrecht: Kluwer Academic Publishers; 1991. p. 187–224.CrossRefGoogle Scholar
  72. 72.
    Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A. Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting. J Mater Sci. 2010;45(15):4163–73.CrossRefGoogle Scholar
  73. 73.
    Kuhn M, Bishop SR, Rupp JLM, Tuller HL. Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1-xZrxO2-δ) solid solutions. Acta Mater. 2013;61:4277–88.CrossRefGoogle Scholar
  74. 74.
    Sibieude F, Ducarroir M, Tofighiv A, Ambriz J. High temperature experiments with a solar furnace: the decomposition of Fe3O4, Mn3O4, CdO. Int J Hydrog Energy. 1982;7(1):79–88.CrossRefGoogle Scholar
  75. 75.
    Green DW, Perry RH, editors. Perry’s chemical engineers handbook. 8th ed. New York: McGraw-Hill; 2008. ISBN 9780071422949.Google Scholar
  76. 76.
    Miller JE, Allendorf MD, Diver RB, Evans LR, Siegel NP, Stuecker JN. Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci. 2008;43(4):4714–28.CrossRefGoogle Scholar
  77. 77.
    Lorentzou S, Bakatselou E, Pagkoura C, Karagiannakis G, Konstandopoulos AG. H2 and CO production via two-step thermochemical splitting of H2O and CO2 over redox powders and redox porous structures. International Congress on Particle Technology (PARTEC 2013), V12 Applications, Paper no 426, Nuremberg, 23–25 Apr 2013.Google Scholar
  78. 78.
    Lorentzou S, Karagiannakis G, Pagkoura C, Zygogianni A, Konstandopoulos AG. Thermochemical CO2 and CO2/H2O splitting over NiFe2O4 for solar fuels synthesis. Energy Procedia. 2014;49:1999–2008.CrossRefGoogle Scholar
  79. 79.
    Chambon M, Abanades S, Flamant G. Thermal dissociation of compressed ZnO and SnO2 powders in a moving-front solar thermochemical reactor. AIChE J. 2011;57(8):2264–73.CrossRefGoogle Scholar
  80. 80.
    Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE. Solar thermochemical water-splitting ferrite-cycle heat engines. J Dol Energy Eng. 2008;130(4):041001-1–8.Google Scholar
  81. 81.
    Loutzenhiser PG, Meier A, Steinfeld A. Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials. 2010;3:4922–38.CrossRefGoogle Scholar
  82. 82.
    Haueter P, Moeller S, Palumbo R, Steinfeld A. The production of zinc by thermal dissociation of zinc oxide-solar chemical reactor design. Sol Energy. 1999;67(1-3):161–7.CrossRefGoogle Scholar
  83. 83.
    Gokon N, Takahashi S, Yamamoto H, Kodama T. Thermochemical two-step water-splitting reactor with internally circulating fluidized Bed for thermal reduction of ferrite particles. Int J Hydrog Energy. 2008;33(9):2189–99.CrossRefGoogle Scholar
  84. 84.
    Alonso E, Romero M. Review of experimental investigation on directly irradiated particles solar reactors. Renew Sustain Energy Rev. 2015;41:53–67.CrossRefGoogle Scholar
  85. 85.
    Lorentzou S, Karagiannakis G, Dimitrakis D, Pagkoura C, Zygogianni A, Konstandopoulos AG. Thermochemical redox cycles over Ce-based oxides. Energy Procedia. 2015; 69:1800–1809; Also in Proceedings of SolarPACES 2014 international conference, Beijing; 16–19 Sept 2015.Google Scholar
  86. 86.
    Official Hydrosol Projects Website: http://160.40.15.244/hydrosol/images.html (Last accessed on Sept 2015).
  87. 87.
    Kodama T. High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energy Combust Sci. 2003;29(6):567–97.CrossRefGoogle Scholar
  88. 88.
    COMETNANO project website on CORDIS. http://cordis.europa.eu/project/rcn/91283_de.html.
  89. 89.
    Loutzenhiser PG, Meier A, Gstoehl D, Steinfeld A. CO2 splitting via the solar thermochemical cycle based on Zn/ZnO redox reactions. In Yun Hang Hu (ed.): Advances in CO2 conversion and utilization, vol. 1056. 2010; p. 25–30. American Chemical Society: Washington, DC.Google Scholar
  90. 90.
    Stamatiou A, Steinfeld A, Jovanovic ZR. On the effect of the presence of solid diluents during Zn oxidation by CO2. Ind Eng Chem Res. 2013;52(5):1859–69.CrossRefGoogle Scholar
  91. 91.
    Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels. 2012;26(11):7051–9.CrossRefGoogle Scholar
  92. 92.
    Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science. 2010;330(6012):1797–801.CrossRefPubMedGoogle Scholar
  93. 93.
    Galvita VV, Poelman H, Bliznuk V, Detavernier C, Marin GB. CeO2-modified Fe2O3 for CO2 utilization via chemical looping. Ind Eng Chem Res. 2013;52(25):8416–26.CrossRefGoogle Scholar
  94. 94.
    Miller JE, Ambrosini A, Coker EN, Allendorf MD, McDaniel AH. Advancing oxide materials for thermochemical production of solar fuels. Energy Procedia. 2014;49:2019–26.CrossRefGoogle Scholar
  95. 95.
    Schramek P, Mills DR. Multi-tower solar array. Sol Energy. 2003;75:249–60.CrossRefGoogle Scholar
  96. 96.
    Schramek P, Mills DR. Heliostats for maximum ground coverage. Energy. 2004;29:701–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Athanasios G. Konstandopoulos
    • 1
    • 2
    Email author
  • Chrysoula Pagkoura
    • 1
  • Dimitrios A. Dimitrakis
    • 1
    • 2
  • Souzana Lorentzou
    • 1
  • George P. Karagiannakis
    • 1
  1. 1.Aerosol and Particle Technology LaboratoryCenter for Research and Technology HellasThessalonikiGreece
  2. 2.Department of Chemical EngineeringAristotle UniversityThessalonikiGreece

Personalised recommendations