Skip to main content

Paints and Coating of Multicomponent Product

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 223))

Abstract

Paint is a liquid phase, whereas coating and thin film deposition consists of various processes that apply a layer of material onto a surface. Paint is generally considered as a type of coating in which the paint coating have some attractive features such as ease of processing, low cost, ease of field maintenance and commercial availability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MFT:

Minimum film forming temperature

Tg:

Glass transition temperature

TGIC:

Triglycidyl isocyanurete

TMA:

Trimellitic anhydride

IPDI:

Isophorone diisocyanate

IR:

Infrared

UV:

Ultra-violet

PRC:

Pulsed radiation curing

wft:

Wet film thickness

dft:

Dry film thickness

ICATS:

Industrial coating applicator training scheme

VOC:

Volatile organic compounds

PTFE:

Polytetra fluoro ethylene

SEM:

Scanning electron microscope

PHBV:

Poly(hydroxyabutyrate-co-hydroxyvalerate)

CED:

Cathodic electro-deposition

SAM:

Self-assembled monolayer

LBL:

Layer-by-layer

AFM:

Atomic force microscopy

XPS:

X-ray photoelectron spectroscopy

ACF:

Activated carbon fibers

PET:

Polyethylene terephthalate

HA:

Hyaluronic acid

CG:

Cationized gelatin

FTIR:

Fourier transform infrared spectra

ATR:

Attenuated total reflectance

EDX:

Energy dispersive X-ray spectroscopy

MWCNT:

Multi-walled carbon nanotubes

TEM:

Transmission electron microscopy

PSC:

Polymer solar cells

PVDF:

Poly(vinylidene fluoride)

References

  1. Wijewardane S, Goswami DY (2012) A review on surface control of thermal radiation by paints and coatings for new energy applications. Renew Sustain Energy Rev 16:1863–1873

    Article  Google Scholar 

  2. Bogaerts WF, Lampert CM (1983) Review—materials for photo-thermal solar energy conversion. J Mater Sci 18:2847–2875

    Article  ADS  Google Scholar 

  3. Agnihotri OP, Gupta BK (1981) Solar selective surfaces. Wiley, New York, NY

    Google Scholar 

  4. Pipoly R (1989) Polym Paint Colour J 179:357

    Google Scholar 

  5. Supcoe RF (1974) Coatings for infrared camouflage, Rep. C-3946. David Taylor Research Center, Annapolis, MD

    Google Scholar 

  6. Thiele ES, French RH (1998) Light-scattering properties of titania particles studied using a finite-element method. J Am Ceram Soc 81:469–479

    Article  Google Scholar 

  7. Perera YD (2004) Effect of pigmentation on organic coating characteristics. Prog Org Coat 50:247–262

    Article  Google Scholar 

  8. Gunde MK, Kozar Logar J, Crnjak Orel Z et al (1996) Optimum thickness determination to maximize the spectral selectivity of black pigment coatings for solar collectors. Thin Solid Films 277:185–191

    Article  Google Scholar 

  9. Williams DA, Lappin TA, Duffie JA (1963) Selective radiation properties of particulate coatings. J Eng Power Trans ASME 85:213

    Article  Google Scholar 

  10. Malhotra LK, Chidambaram K, Chopra KL (1981) Partly selective black paint coatings. Energy Res 5:393–396

    Article  Google Scholar 

  11. Groover MP (2010) Fundamentals of modern manufacturing: materials, processes and systems, 4th edn. Wiley, New York, NY

    Google Scholar 

  12. Granqvist CG (1985) Spectrally selective coatings for energy efficiency and solar applications. Phys Scr 32:401–407

    Article  ADS  Google Scholar 

  13. Randich E (1981) Thin Solid Films 83:393

    Article  ADS  Google Scholar 

  14. Rabek JF (1988) Applications of polymers in solar energy utilization: review article. Prog Polym Sci 13:83–188

    Article  Google Scholar 

  15. Beatty LW, Penboss I (1993) Chapter 21. Film formation. In: Oil and Colour Chemists Association (ed) Surface coatings: raw materials and their usage, vol 1. Chapman and Hall, London, U.K., p 325

    Google Scholar 

  16. Bindschaedler C, Gurney R, Doelker E (1983) Notions theoriques sur la formation des films obtenus a partir de micro-dispersions aqueuses et application a lenrobage. Labo-Pharma Probl Technol 31:389–394

    Google Scholar 

  17. Zhang G, Schwartz JB, Schnaare RL (1988) In: Proceedings of 15th international symposium controlled release of bioactive materials, Basel

    Google Scholar 

  18. Zhang G, Schwartz JB, Schnaare RL (1989) In: Proceedings of 16th international symposium controlled release of bioactive materials, Chicago

    Google Scholar 

  19. Lehmann K (1992) In: Donbrow M (ed) Microcapsules and nanoparticles in medicine and pharmacy. CRC Press, Boca Raton, FL, pp 74–96

    Google Scholar 

  20. Lehmann K (1989) In: Mc Ginity JW (ed) Aqueous polymeric coatings for pharmaceutical dosage forms. Marcel Dekker, New York, pp 153–247

    Google Scholar 

  21. Bierwagen GP (2015) Encyclopaedia Britannica. http://www.britannica.com/technology/surface-coating. Accessed 10 Oct 2015

  22. Asthana R, Kumar A, Dahotre NB (2005) Materials science in manufacturing. Elsevier, Boston, MA

    Google Scholar 

  23. Williams D, Randall P (1994) Guide to cleaner technologies: organic coating replacements. Environmental Production Agency, Washington DC, U.S., pp 1–89

    Google Scholar 

  24. Lehr WD (1991) Powder coating systems. McGraw-Hill Inc, New York, NY

    Google Scholar 

  25. Reich A (1993) Market trends in powder coatings. Eur Polym Paint Colour J 297

    Google Scholar 

  26. Loutz JM, Maetens D, Baudour M et al (1993) New developments in powder coatings, Part 1 and Part 2. Eur Paint Polym J 584

    Google Scholar 

  27. Stoye D, Freitag W (1998) Paints, coatings and solvents, 2nd edn. Wiley, New York, NY

    Book  Google Scholar 

  28. Goldschmidt A, Hantschke B, Knappe E et al (1984) Glasurit-Handbuch, 11th edn. Curt R. Vincentz Verlag, Hannover

    Google Scholar 

  29. Ondratschek D, Ortlieb K (1989) Taschenbuch fur Lackierbetriebe, 47th edn. Curt R. Vincentz Verlag, Hannover

    Google Scholar 

  30. Thomer KW, Ondratschek D (1987) Lackieren. In: Handbuch der Fertigungstechnik, vol 4/1. Carl Hanser Verlag, Munchen

    Google Scholar 

  31. Oppen D (1983) Die Vorbehandlung des metallischen Anstrichuntergrundes. Seminar: Lackierungen in der Metallindustrie, Technische Akademie Esslingen, Esslingen

    Google Scholar 

  32. Rausch W (1988) Die Phospliutierung von Metallen, 2nd edn. Eugen G. Leuze Verlag, Saulgau

    Google Scholar 

  33. Hoffmann U (1984) Grundsatzliche verfahrenstechnische Gesichtspunkte bei der Kunststofflackierung. Seminar: Lackieren von Kunststoffoberflachen. Wurttembergischer Ingenieurverein Stuttgart, Stuttgart

    Google Scholar 

  34. Wittel K (1986) Ind Luckierhetr 54:121–127

    Google Scholar 

  35. Hartmann R (1987) Physikalische Vorbehandlungsmethoden von Polymeren. In: Seminar: 4th Deutsche Kunststoff-Finish, Bad Nauheim, Praxis-Forum, Berlin

    Google Scholar 

  36. Paint coatings (2015) Encyclopedia of UK steel construction information. http://www.steelconstruction.info/Paint_coatings. Accessed 12 Oct 2015

  37. Hendy CR, Iles DC (2010) Steel bridge group: guidance notes on best practice in steel bridge construction and high performance paint coatings, 5th issue, p 185

    Google Scholar 

  38. Steel buildings (2003) Chapter 12—Corrosion protection. The British Constructional Steelwork Association Ltd

    Google Scholar 

  39. Kovacevic S, Ujevic D, Brnada S (2010) Coated textile materials. In: Dubrovski PD (ed) Woven fabric engineering, pp 241–254. http://www.intechopen.com/books/woven-fabric-engineering/coated-textile-materials. doi:10.5772/10468

    Google Scholar 

  40. The Freedonia Group (2012) Coated fabrics. In: US industry study with forecasts for 2016 & 2021. www.freedoniagroup.com

  41. Govaert F, Vanneste M (2014) Preparation and application of conductive textile coatings filled with honeycomb structured carbon nanotubes. J Nanomater. doi:10.1155/2014/651265

    Google Scholar 

  42. Soljacic I (1993) Textile coating. Tekstil 42:673–686

    Google Scholar 

  43. Skoko M (1998) Investigations of properties and multiaxial strength and deformations of coated textile fabrics. Tekstil 47:339–344

    Google Scholar 

  44. Wu X, Wyman I, Zhang G et al (2015) Preparation of superamphiphobic polymer based coatings via spray and dip coating strategies. Prog Org Coat. doi:10.1016/j.porgcoat.2015.08.008

    Google Scholar 

  45. Steele A, Bayer I, Loth E (2009) Inherently superoleophobic nanocomposites coatings by spray atomization. Nano Lett 9:501–505

    Article  ADS  Google Scholar 

  46. Xiong D, Liu GJ, Hong LZ et al (2011) Superamphiphobic di-block copolymer coatings. Chem Mater 23:4357–4366

    Article  Google Scholar 

  47. Yang W, Zhu LQ, Chen YC (2014) Synthesis and characterization of core–shell latex: effect of fluorinated acrylic monomer on properties of polyacrylates. J Fluor Chem 157:35–40

    Article  Google Scholar 

  48. Castelvetro V, Francini G, Ciardelli G et al (2001) Evaluating fluorinated acrylic lattices as textile water and oil repellent finishes. Text Res J 71:399–406

    Article  Google Scholar 

  49. Wu WL, Yuan GC, He AH et al (2009) Surface depletion of the fluorine content of electro-spun fibers of fluorinated polyurethane. Langmuir 25:3178–3183

    Article  Google Scholar 

  50. Hwang HD, Kim HJ (2011) UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion. J Colloid Interface Sci 362:274–284

    Article  Google Scholar 

  51. Jiang M, Zhao XL, Ding XB et al (2005) A novel approach to fluorinated polyurethane by macro-monomer copolymerization. Eur Polym J 41:1798–1803

    Article  Google Scholar 

  52. Li GH, Shen YD, Ren QH (2005) Effect of fluorinated acrylate on the surface properties of cationic fluorinated polyurethane-acrylate hybrid dispersions. J Appl Polym Sci 97:2192–2196

    Article  Google Scholar 

  53. Wang C, Li XR, Du B et al (2014) Preparation and properties of a novel waterborne fluorinated polyurethane-acrylate hybrid emulsion. Colloid Polym Sci 292:579–587

    Article  Google Scholar 

  54. Rungwasantisuk A, Raibhu S (2015) Spray coating process variable and property analysis of UV-curable polyethylene acrylate coating on polycarbonate substrate. Prog Org Coat 89:132–142

    Article  Google Scholar 

  55. Zabihi F, Xie Y, Gao S et al (2015) Morphology, conductivity and wetting characteristics of PEDOT: PSS thin films deposited by spin and spray coating. Appl Surf Sci 338:163–177

    Article  ADS  Google Scholar 

  56. Aziz F, Ismail AF (2015) Spray coating methods for polymer solar cells fabrication: a review. Mater Sci Semicond Process 39:416–425

    Article  Google Scholar 

  57. Gilissen K, Stryckers J, Verstappen P et al (2015) Ultrasonic spray coating as deposition technique for the light emitting layer in polymer LEDs. Org Electron 20:31–35

    Article  Google Scholar 

  58. Wang H, Gao D, Meng Y et al (2015) Corrosion-resistance, robust and wear-durable highly amphiphobic polymer based composite coating via a simple spraying approach. Prog Org Coat 82:74–80

    Article  Google Scholar 

  59. Barletta M, Gisario A, Rubino G (2011) Scratch response of high-performance thermoset and thermoplastic powders deposited by the electrostatic spray and ‘hot dipping’ fluidized bed coating methods: the role of the contact condition. Surface Coat Technol 205:5186–5198

    Article  Google Scholar 

  60. Airless Atomization. In: Finish systems, New Berlin, WI. http://www.finishsystems.com/airless.html

  61. Bolelli G, Bellucci D, Cannillo V et al (2015) Comparison between suspension plasma sprayed and high velocity suspension flame sprayed bioactive coatings. Surf Coat Technol 280:232–249

    Article  Google Scholar 

  62. Nistal A, Garcia E, Garcia-Diego C et al (2015) Flame spraying of adherent silicon coatings on SiC substrates. Surf Coat Technol 270:8–15

    Article  Google Scholar 

  63. Puranen J, Laakso J, Honkanen M et al (2015) High temperature oxidation tests for the high velocity solution precursor flame sprayed manganese–cobalt oxide spinel protective coatings on SOFC interconnector steel. Int J Hydrogen Energy 40:6216–6227

    Article  Google Scholar 

  64. Monsalve M, Lopez E, Ageorges H et al (2015) Bioactivity and mechanical properties of bioactive glass coatings fabricated by flame spraying. Surf Coat Technol 268:142–146

    Article  Google Scholar 

  65. Belamri A, Ati A, Braccini M et al (2015) Hypereutectoid steel coatings obtained by thermal flame spraying-effect of annealing on microstructure, tribological properties and adhesion energy. Surf Coat Technol 263:86–99

    Article  Google Scholar 

  66. Chen X, Yuan J, Huang J et al (2014) Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications. Appl Surf Sci 311:864–869

    Article  ADS  Google Scholar 

  67. Bolelli G, Cannillo V, Gadow R et al (2014) Properties of Al2O3 coatings by high velocity suspension flame spraying (HVSFS): effects of injection systems and torch design. Surf Coat Technol 270:175–189

    Article  Google Scholar 

  68. Ye J, Bu C, Han Z et al (2015) Flame-spraying synthesis and infrared emission property of Ca2+/Cr3+ doped LaAlO3 microspheres. J Eur Ceram Soc 35:3111–3118

    Article  Google Scholar 

  69. Chaliampalias D, Andronis S, Pliatsikas N et al (2014) Formation and oxidation resistance of Al/Ni coatings on low carbon steel by flame spray. Surf Coat Technol 255:62–68

    Article  Google Scholar 

  70. Saremi M, Valefi Z (2013) The effects of spray parameters on the microstructure and thermal stability of thermal barrier coatings formed by solution precursor flame spray (spfs). Surf Coat Technol 220:44–51

    Article  Google Scholar 

  71. Redjdal O, Zaid B, Tabti MS et al (2013) Characterization of thermal flame sprayed coatings prepared from FeCr mechanically milled powder. J Mater Process Technol 213:779–790

    Article  Google Scholar 

  72. Bergant Z, Trdan U, Grum J (2014) Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corros Sci 88:372–386

    Article  Google Scholar 

  73. Torres B, Campo M, Lieblich M et al (2013) Oxy-acetylene flame thermal sprayed coatings of aluminium matrix composites reinforced with MoSi2 intermetallic particles. Surf Coat Technol 236:274–283

    Article  Google Scholar 

  74. Bao Y, Gawne DT, Zhang T (2012) Cure kinetics of flame-sprayed thermoset coatings. Surf Coat Technol 207:89–95

    Article  Google Scholar 

  75. Yuan J, Zhan Q, Lei Q et al (2012) Fabrication and characterization of hybrid micro/nano-structured hydrophilic titania coatings deposited by suspension flame spraying. Appl Surf Sci 258:6672–6678

    Article  ADS  Google Scholar 

  76. Bellucci D, Bolelli G, Cannillo V et al (2012) High velocity suspension flame sprayed (HVSFS) potassium-based bioactive glass coatings with and without TiO2 bond coat. Surf Coat Technol 206:3857–3868

    Article  Google Scholar 

  77. Ashrafizadeh H, Mertiny P, McDonald A (2014) Determination of temperature distribution within polyurethane substrates during deposition of flame-sprayed aluminum–12silicon coatings using Green’s function modeling and experiments. Surf Coat Technol 259:625–636

    Article  Google Scholar 

  78. Sharma S (2014) Parametric study of abrasive wear of Co–CrC based flame sprayed coatings by response surface methodology. Tribol Int 75:39–50

    Article  Google Scholar 

  79. Gonzalez R, McDonald A, Mertiny P (2013) Effect of flame-sprayed Al–12Si coatings on the failure behaviour of pressurized fibre-reinforced composite tubes. Polym Testing 32:1522–1528

    Article  Google Scholar 

  80. Kalacska G, Fazekas L, Keresztes R et al (2011) Cold flame-sprayed and oil-impregnated porous metallic coatings. Appl Surf Sci 257:9532–9538

    Article  ADS  Google Scholar 

  81. Singrathai S, Rachpech V, Niyomwas S (2011) A thermal coating process using self-propagating high-temperature synthesis assisted flame spray coating process. Energy Procedia 9:398–403

    Article  Google Scholar 

  82. Soveja A, Sallamand P, Liao H et al (2011) Improvement of flame spraying PEEK coating characteristics using lasers. J Mater Process Technol 211:12–23

    Article  Google Scholar 

  83. Bolelli G, Cannillo V, Gadow R et al (2010) Microstructure and in-vitro behaviour of a novel high velocity suspension flame sprayed (HVSFS) bioactive glass coating. Surf Coat Technol 205:1145–1149

    Article  Google Scholar 

  84. Vargas F, Ageorges H, Fournier P et al (2010) Mechanical and tribological performance of Al2O3–TiO2 coatings elaborated by flame and plasma spraying. Surf Coat Technol 205:1132–1136

    Article  Google Scholar 

  85. Maury-Ramirez A, Nikkanen JP, Honkanen M et al (2014) TiO2 coatings synthesized by liquid flame spray and low temperature sol-gel technologies on autoclaved aerated concrete for air-purifying purposes. Mater Charact 87:74–85

    Article  Google Scholar 

  86. Teisala H, Tuominen M, Aromaa M et al (2010) Development of superhydrophobic coating on paperboard surface using the liquid flame spray. Surf Coat Technol 205:436–445

    Article  Google Scholar 

  87. Bolelli G, Bonferroni B, Cannillo V et al (2010) Wear behaviour of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings produced using micron- and nano-sized powder suspensions. Surf Coat Technol 204:2657–2668

    Article  Google Scholar 

  88. Bolelli G, Cannillo V, Gadow R et al (2009) Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings. J Eur Ceram Soc 29:2249–2257

    Article  Google Scholar 

  89. Zhuang MA, Wei W, Zou JF et al (2011) Preparation and properties of flame-sprayed Mo–FeB–Fe cermet coatings. Trans Nonferrous Metals Soc China 21:1314–1321

    Article  Google Scholar 

  90. Feng Z, Xu H, Yan F (2008) Preparation of flame sprayed poly(tetrafluoroethylene-co-hexafluoropropylene) coatings and their tribological properties under water lubrication. Appl Surf Sci 255:2408–2413

    Article  ADS  Google Scholar 

  91. Bolelli G, Rauch J, Cannillo V et al (2008) Investigation of high velocity suspension flame sprayed (HVSFS) glass coatings. Mater Lett 62:2772–2775

    Article  Google Scholar 

  92. Cano C, Garcia E, Fernandes AL et al (2008) Mullite/ZrO2 coatings produced by flame spraying. J Eur Ceram Soc 28:2191–2197

    Article  Google Scholar 

  93. Bradai MA, Bounar N, Benabbas A et al (2008) Study of microstructure, phases and microhardness of metallic coatings deposited by flame thermal spray. J Mater Process Technol 200:410–415

    Article  Google Scholar 

  94. Sainz MA, Osendi MI, Miranzo P (2008) Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying. Surf Coat Technol 202:1712–1717

    Article  Google Scholar 

  95. Akasaka H, Ohto M, Hasebe Y et al (2011) Yttria coating synthesized by reactive flame spray process using Y-EDTA complex. Surf Coat Technol 205:3877–3880

    Article  Google Scholar 

  96. Uyulgan B, Dokumaci E, Celik E et al (2007) Wear behaviour of thermal flame sprayed FeCr coatings on plain carbon steel substrate. J Mater Process Technol 190:204–210

    Article  Google Scholar 

  97. Liu HY, Huang JH, Yin CF et al (2007) Microstructure and properties of TiC–Fe cermet coatings by reactive flame spraying using asphalt as carbonaceous precursor. Ceram Int 33:827–835

    Article  Google Scholar 

  98. Harsha S, Dwivedi DK, Agrawal A (2007) Influence of WC addition in Co–Cr–W–Ni–C flame sprayed coatings on microstructure, micro-hardness and wear behaviour. Surf Coat Technol 201:5766–5775

    Article  Google Scholar 

  99. Li Y, Ma Y, Xie B et al (2007) Dry friction and wear behavior of flame-sprayed polyamide 1010/n-SiO2 composite coatings. Wear 262:1232–1238

    Article  Google Scholar 

  100. Cano C, Osendi MI, Belmonte M et al (2006) Effect of the type of flame on the microstructure of CaZrO3 combustion flame sprayed coatings. Surf Coat Technol 201:3307–3313

    Article  Google Scholar 

  101. Zhang G, Liao H, Yu H et al (2006) Deposition of PEEK coatings using a combined flame spraying—laser remelting process. Surf Coat Technol 201:243–249

    Article  Google Scholar 

  102. Bemporad E, Bolelli G, Cannillo V et al (2010) Structural characterization of high velocity suspension flame sprayed (HVSFS) TiO2 coatings. Surf Coat Technol 204:3902–3910

    Article  Google Scholar 

  103. Habib KA, Saura JJ, Ferrer C et al (2006) Comparison of flame sprayed Al2O3/TiO2 coatings: their microstructure, mechanical properties and tribology behavior. Surf Coat Technol 201:1436–1443

    Article  Google Scholar 

  104. Liu HY, Huang JH (2006) Reactive flame spraying of TiC–Fe cermet coating using asphalt as a carbonaceous precursor. Surf Coat Technol 200:5328–5333

    Article  Google Scholar 

  105. Lisjak D, Lintunen P, Hujanen A et al (2011) Hexaferrite/polyethylene composite coatings prepared with flame spraying. Mater Lett 65:534–536

    Article  Google Scholar 

  106. Zhang C, Zhang G, Vincent JI et al (2009) Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Prog Org Coat 66:248–253

    Article  Google Scholar 

  107. Bolelli G, Cannillo V, Gadow R et al (2010) Effect of the suspension composition on the microstructural properties of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings. Surf Coat Technol 204:1163–1179

    Article  Google Scholar 

  108. Sharma SP, Dwivedi DK, Jain PK (2009) Effect of La2O3 addition on the microstructure, hardness and abrasive wear behavior of flame sprayed Ni based coatings. Wear 267:853–859

    Article  Google Scholar 

  109. Kratschmer T, Aneziris CG, Gruner P (2011) Mechanical properties of flame sprayed free-standing coatings. Ceram Int 37:2727–2735

    Article  Google Scholar 

  110. Bolelli G, Cannillo V, Gadow R et al (2009) Properties of high velocity suspension flame sprayed (HVSFS) TiO2 coatings. Surf Coat Technol 203:1722–1732

    Article  Google Scholar 

  111. Rodriguez RMHP, Paredes RSC, Wido SH et al (2007) Comparison of aluminum coatings deposited by flame spray and by electric arc spray. Surf Coat Technol 202:172–179

    Google Scholar 

  112. Lia JF, Lib L, Stott FH (2004) Fractal characteristics of apparent pores present on polished cross sections of alumina coatings prepared by laser-assisted flame hybrid spraying. Thin Solid Films 453–454:229–233

    Article  Google Scholar 

  113. Pimenoff JA, Hovinen AK, Rajala MJ (2009) Nanostructured coatings by liquid flame spraying. Thin Solid Films 517:3057–3060

    Article  ADS  Google Scholar 

  114. Zhang G, Liao H, Cherigui M et al (2007) Effect of crystalline structure on the hardness and interfacial adherence of Xame sprayed poly(ether–ether–ketone) coatings. Eur Polym J 43:1077–1082

    Article  Google Scholar 

  115. Arcondeguy A, Gasgnier G, Montavon G et al (2008) Effects of spraying parameters onto flame-sprayed glaze coating structures. Surf Coat Technol 202:4444–4448

    Article  Google Scholar 

  116. Kahraman N, Gulenc B (2002) Abrasive wear behaviour of powder flame sprayed coatings on steel substrates. Mater Des 23:721–725

    Article  Google Scholar 

  117. Krishna BV, Misra VN, Mukherjee PS et al (2002) Microstructure and properties of flame sprayed tungsten carbide coatings. Int J Refract Metal Hard Mater 20:355–374

    Article  Google Scholar 

  118. Gonzalez R, Cadenas M, Fernandez R et al (2007) Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser. Wear 262:301–307

    Article  Google Scholar 

  119. Linton JD, Jiang Q, Gatti CJ et al (2013) Erratum to “Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using taguchi methods” [Surf Coat Technol 79(1–3) (1996) 276–288]. Surf Coat Technol 214:173–174

    Google Scholar 

  120. Kusoglu IM, Celik E, Cetinel H et al (2005) Wear behavior of flame-sprayed Al2O3–TiO2 coatings on plain carbon steel substrates. Surf Coat Technol 200:1173–1177

    Article  Google Scholar 

  121. Kim HJ, Hwang SY, Lee CH et al (2003) Assessment of wear performance of flame sprayed and fused Ni-based coatings. Surf Coat Technol 172:262–269

    Article  Google Scholar 

  122. Lin L, Han K (1998) Optimization of surface properties by flame spray coating and boriding. Surf Coat Technol 106:100–105

    Article  Google Scholar 

  123. Zhang Z, Wang Z, Liang B (2006) Tribological properties of flame sprayed Fe–Ni–RE alloy coatings under reciprocating sliding. Tribol Int 39:1462–1468

    Article  MathSciNet  Google Scholar 

  124. Guo DZ, Li FL, Wang JY et al (1995) Effects of post-coating processing on structure and erosive wear characteristics flame and plasma spray coatings. Surf Coat Technol 73:73–78

    Article  Google Scholar 

  125. Hidalgo VH, Varela JB, Menendez AC et al (2001) High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear 247:214–222

    Article  Google Scholar 

  126. Rauch J, Bolelli G, Killinger A et al (2009) Advances in high velocity suspension flame spraying (HVSFS). Surf Coat Technol 203:2131–2138

    Article  Google Scholar 

  127. Lian Y, Yu L, Xue Q (1995) The effect of cerium dioxide on the friction and wear properties of flame spraying nickel-based alloy coating. Wear 181–183:436–441

    Article  Google Scholar 

  128. Navas C, Colaco R, de Damborenea J et al (2006) Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf Coat Technol 200:6854–6862

    Article  Google Scholar 

  129. Chaliampalias D, Vourlias G, Pavlidou E et al (2009) Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings. Appl Surf Sci 255:3605–3612

    Article  ADS  Google Scholar 

  130. Bhadang KA, Holding CA, Thissen H et al (2010) Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater 6:1575–1583

    Article  Google Scholar 

  131. Gadow R, Killinger A, Rauch J (2008) New results in high velocity suspension flame spraying (HVSFS). Surf Coat Technol 202:4329–4336

    Article  Google Scholar 

  132. Li JF, Li L, Stott FH (2004) Combined laser and flame surface coating of refractory ceramics: phase and microstructural characteristics. Thin Solid Films 453–454:67–71

    Article  Google Scholar 

  133. Li JF, Li L, Stott FH (2004) Multi-layered surface coatings of refractory ceramics prepared by combined laser and flame spraying. Surf Coat Technol 180–181:500–505

    Article  Google Scholar 

  134. Babu MV, Kumar RK, Prabhakar O et al (1996) Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods. Surf Coat Technol 79(276):288

    Google Scholar 

  135. Iordanova I, Forcey KS, Gergov B et al (1995) Characterization of flame-sprayed and plasma-sprayed pure metallic and alloyed coatings. Surf Coat Technol 72:23–29

    Article  Google Scholar 

  136. Killinger A, Kuhn M, Gadow R et al (2006) High-velocity suspension flame spraying (HVSFS), a new approach for spraying nanoparticles with hypersonic speed. Surf Coat Technol 201:1922–1929

    Article  Google Scholar 

  137. Li J, Liao H, Coddet C (2002) Friction and wear behavior of flame-sprayed PEEK coatings. Wear 252:824–831

    Article  Google Scholar 

  138. Karageorgakis NI, Heel A, Graule T et al (2011) Flame spray deposition of nanocrystalline dense Ce0.8Gd0.2O2 − δ thin films: deposition mechanism and microstructural characterization. Solid State Ionics 192:464–471

    Article  Google Scholar 

  139. Sugama T, Kawase R, Berndt CC et al (1995) An evaluation of methacrylic acid-modified poly(ethylene) coatings applied by flame spray technology. Prog Org Coat 25:205–216

    Article  Google Scholar 

  140. Flame spray coating info and benefits. Flame Spray Coating Co., Fraser, MI. http://www.flamesprayusa.com/flame-spray-coating.php

  141. Yan J, Xu J, Ud-Din R et al (2015) Preparation of agglomerated powders for airplasma spraying MoSi2 coating. Ceram Int 41:10547–10556

    Google Scholar 

  142. Pu H, Niu Y, Hu C et al (2015) Ablation of vacuum plasma sprayed TaC-based composite coatings. Ceram Int 41:11387–11395

    Article  Google Scholar 

  143. Niu Y, Lu D, Huang L et al (2015) Comparison of W–Cu composite coatings fabricated by atmospheric and vacuum plasma spray processes. Vacuum 117:98–103

    Article  ADS  Google Scholar 

  144. Dong S, Song B, Liao H et al (2015) Deposition of NiCrBSi coatings by atmospheric plasma spraying and dry-ice blasting: microstructure and wear resistance. Surf Coat Technol 268:36–45

    Article  Google Scholar 

  145. Wen B, Man Z, Liu Y et al (2014) Supersonic flame ablation resistance of W/ZrC coating deposited on C/SiC composites by atmosphere plasma spraying. Ceram Int 40:11825–11830

    Article  Google Scholar 

  146. Hou H, Ning X, Wang Q et al (2015) Anti-ablation behavior of air plasma-sprayed Mo(Si, Al)2 coating. Surf Coat Technol 274:60–67

    Article  Google Scholar 

  147. Daroonparvar M, Yajid MAM, Yusof NM et al (2015) Deposition of duplex MAO layer/nanostructured titanium dioxide composite coatings on Mg–1% Ca alloy using a combined technique of air plasma spraying and micro arc oxidation. J Alloy Compd 649:591–605

    Article  Google Scholar 

  148. Zhao S, Zhao Y, Zou B et al (2014) Characterization and thermal cycling behavior of La2(Zr0.7Ce0.3)2O7/8YSZ functionally graded thermal barrier coating prepared by atmospheric plasma spraying. J Alloy Compd 592:109–114

    Article  Google Scholar 

  149. Afzal M, Ajmal M, Nusair Khan A et al (2014) Surface modification of air plasma spraying WC–12% Co cermet coating by laser melting technique. Opt Laser Technol 56:202–206

    Article  ADS  Google Scholar 

  150. Song B, Dong S, Liao H et al (2015) Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite coating prepared by atmospheric plasma spraying. Surf Coat Technol 268:24–29

    Article  Google Scholar 

  151. Zhao S, Gu L, Zhao Y et al (2013) Thermal cycling behavior and failure mechanism of La2(Zr0.7Ce0.3)2O7/Eu3+-doped 8YSZ thermal barrier coating prepared by atmospheric plasma spraying. J Alloy Compd 580:101–107

    Article  Google Scholar 

  152. Wang Y, Wang D, Yan J et al (2013) Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying. Appl Surf Sci 284:881–888

    Article  ADS  Google Scholar 

  153. Daroonparvar M, Yajid MAM, Yusof NM et al (2015) Microstructural characterization of air plasma sprayed nanostructure ceramic coatings on Mg–1% Ca alloys (bonded by NiCoCrAlYTa alloy). Ceram Int. doi:10.1016/j.ceramint.2015.08.118

    Google Scholar 

  154. Hu YZ, Li CX, Yang GJ et al (2014) Evolution of microstructure during annealing of Mn1.5Co1.5O4 spinel coatings deposited by atmospheric plasma spray. Int J Hydrogen Energy 39:13844–13851

    Article  Google Scholar 

  155. Palacio CC, Ageorges H, Vargas F et al (2013) Effect of the mechanical properties on drilling resistance of Al2O3–TiO2 coatings manufactured by atmospheric plasma spraying. Surf Coat Technol 220:144–148

    Article  Google Scholar 

  156. Ercenk E, Sen U, Yilmaz S (2012) The effect of SiC addition on the crystallization kinetics of atmospheric plasma—sprayed basalt-based coatings. Ceram Int 38:6549–6556

    Article  Google Scholar 

  157. Niu Y, Zheng X, Liu X et al (2012) Influence of powder size on characteristics of air plasma sprayed silicon coatings. Ceram Int 38:5897–5905

    Article  Google Scholar 

  158. Han SJ, Chen Y, Sampath S (2014) Role of process conditions on the microstructure, stoichiometry and functional performance of atmospheric plasma sprayed La(Sr)MnO3 coatings. J Power Sour 259:245–254

    Article  Google Scholar 

  159. Zhao Y, Shinmi A, Zhao X et al (2012) Investigation of interfacial properties of atmospheric plasma sprayed thermal barrier coatings with four-point bending and computed tomography technique. Surf Coat Technol 206:4922–4929

    Article  Google Scholar 

  160. Yaghtin AH, Salahinejad E, Khosravifard A et al (2015) Corrosive wear behavior of chromium carbide coatings deposited by air plasma spraying. Ceram Int 41:7916–7920

    Article  Google Scholar 

  161. Lin CM, Tsai HL, Yang C (2012) Effects of microstructure and properties on parameter optimization of boron carbide coatings prepared using a vacuum plasma-spraying process. Surf Coat Technol 206:2673–2681

    Article  Google Scholar 

  162. Pan ZY, Wang Y, Wang CH et al (2012) The effect of SiC particles on thermal shock behavior of Al2O3/8YSZ coatings fabricated by atmospheric plasma spraying. Surf Coat Technol 206:2484–2498

    Article  Google Scholar 

  163. Chen X, Gu L, Zou B et al (2012) New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying. Surf Coat Technol 206:2265–2274

    Article  Google Scholar 

  164. Guanhong S, Xiaodong H, Jiuxing J et al (2011) Parametric study of Al and Al2O3 ceramic coatings deposited by air plasma spray onto polymer substrate. Appl Surf Sci 257:7864–7870

    Article  ADS  Google Scholar 

  165. Zou B, Khan ZS, Fan X et al (2013) A new double layer oxidation resistant coating based on Er2SiO5/LaMgAl11O19 deposited on C/SiC composites by atmospheric plasma spraying. Surf Coat Technol 219:101–108

    Article  Google Scholar 

  166. Rayon E, Bonache V, Salvador MD et al (2011) Hardness and Young’s modulus distributions in atmospheric plasma sprayed WC–Co coatings using nanoindentation. Surf Coat Technol 205:4192–4197

    Article  Google Scholar 

  167. Niu Y, Zheng X, Ji H et al (2010) Microstructure and thermal property of tungsten coatings prepared by vacuum plasma spraying technology. Fusion Eng Des 85:1521–1526

    Article  Google Scholar 

  168. Raj SV, Palczer A (2010) Thermal expansion of vacuum plasma sprayed coatings. Mater Sci Eng A 527:2129–2135

    Article  Google Scholar 

  169. Chen H, Gou G, Tu M et al (2009) Characteristics of nano particles and their effect on the formation of nanostructures in air plasma spraying WC–17Co coating. Surf Coat Technol 203:1785–1789

    Article  Google Scholar 

  170. Yang W, Li M (2009) Effect of remelting process on characterization of air-plasma sprayed Fe67.5Ni23.5B9 alloy coatings onto 1Cr18Ni9Ti stainless steel. J Mater Process Technol 209:3256–3263

    Article  Google Scholar 

  171. Bolleddu V, Racherla V, Bandyopadhyay PP (2014) Microstructural and tribological characterization of air plasma sprayed nanostructured alumina–titania coatings deposited with nitrogen and argon as primary plasma gases. Mater Des 59:252–263

    Article  Google Scholar 

  172. Bozorgtabar M, Rahimipour M, Salehi M et al (2011) Structure and photocatalytic activity of TiO2 coatings deposited by atmospheric plasma spraying. Surf Coat Technol 205:S229–S231

    Article  Google Scholar 

  173. Huang W, Fan X, Zhao Y et al (2012) Fabrication of thermal barrier coatings onto polyimide matrix composites via air plasma spray process. Surf Coat Technol 207:421–429

    Google Scholar 

  174. Kwon O, Kumar S, Park S et al (2007) Comparison of solid oxide fuel cell anode coatings prepared from different feedstock powders by atmospheric plasma spray method. J Power Sour 171:441–447

    Article  Google Scholar 

  175. Wang L, Wang Y, Sun XG et al (2011) Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater Des 32:36–47

    Article  Google Scholar 

  176. Zois D, Lekatou A, Vardavoulias M et al (2010) Nanostructured alumina coatings manufactured by air plasma spraying: correlation of properties with the raw powder microstructure. J Alloy Compd 495:611–616

    Article  Google Scholar 

  177. Poza P, Grant PS (2006) Microstructure evolution of vacuum plasma sprayed CoNiCrAlY coatings after heat treatment and isothermal oxidation. Surf Coat Technol 201:2887–2896

    Article  Google Scholar 

  178. Huang C, Du L, Zhang W (2009) Preparation and characterization of atmospheric plasma-sprayed NiCr/Cr3C2–BaF2 · CaF2 composite coating. Surf Coat Technol 203:3058–3065

    Article  Google Scholar 

  179. Guo HB, Kuroda S, Murakami H (2006) Segmented thermal barrier coatings produced by atmospheric plasma spraying hollow powders. Thin Solid Films 506–507:136–139

    Article  Google Scholar 

  180. Sarikaya O (2005) Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process. Surf Coat Technol 190:388–393

    Article  Google Scholar 

  181. Singh VP, Sil A, Jayaganthan R (2011) A study on sliding and erosive wear behaviour of atmospheric plasma sprayed conventional and nanostructured alumina coatings. Mater Des 32:584–591

    Google Scholar 

  182. Jaeggi C, Frauchiger V, Eitel F et al (2011) The effect of surface alloying of Ti powder for vacuum plasma spraying of open porous titanium coatings. Acta Mater 59:717–725

    Article  Google Scholar 

  183. Hester LC, Nicholson RL (1989) Powder coating technology update, EPA-45/3-89-33

    Google Scholar 

  184. Michael MJ (1992) Innovation and regulations aid powder coatings. Mod Paint Coat 82:6

    Google Scholar 

  185. Pennisi MS About powder coating. In: Finishing dot com, the home page of the finishing industry. http://www.finishing.com/library/pennisi/powder.html

  186. Polyester powder coating. In: Highland-galvanizers and colour coaters. http://www.higalv.co.uk/technical-issues-polyester.asp

  187. Muhlenkamp Mac (1988) The technology of powder. Mod Paint Coat 78:52–68

    Google Scholar 

  188. Barletta M, Tagliaferri V (2006) Influence of process parameters in electrostatic fluidized bed coating. Surf Coat Technol 200:4619–4629

    Article  Google Scholar 

  189. How to powder coat. In: Paint and other finishes. http://www.wikihow.com/Powder-Coat

  190. What is powder coating. In: Powder Coating Institute. http://www.powdercoating.org/11/Industry/What-is-Powder-Coating

  191. Ellicks DF (1994) Environmental compliant thermoplastic powder coating. In: Proceedings of pollution prevention conference on Lowand No-VOC Coating Technologies, U.S. Environmental Protection Agency. Air and Energy Engineering Research Laboratory. Organics Control Branch. Research Triangle Park, NC. EPA-600/R-94-022

    Google Scholar 

  192. MP&C (1991) Powder coatings share program with water-borne and higher solids. Mod Paint Coat, 53

    Google Scholar 

  193. Kunaver M, Mozetic M, Klanjsek Gunde M (2004) Selective plasma etching of powder coatings. Thin Solid Films 459:115–117

    Article  ADS  Google Scholar 

  194. P&SF (1992) Powder coatings play major role in microwave antenna manufacture. Plat Surf Finish, 8

    Google Scholar 

  195. CMR (1993) Powder coatings. Chem Mark Reporter, 22

    Google Scholar 

  196. Cole GE (1993) Automotive takes a powder. Ind Paint Powder 69:24

    Google Scholar 

  197. P&II (1991) Tintas Coral’s new anti-corrosion powder coating. Paint Ink Int, 40

    Google Scholar 

  198. P&SF (1993) For aluminum window/door fabricator: powder coating is finish of choice. Plat Surf Finish, 8

    Google Scholar 

  199. Metallurgia (1991) New guidelines for powder coating of steels, p 443

    Google Scholar 

  200. AMM (1991) New powder coating needs no priming. Am Metal Market, 4

    Google Scholar 

  201. http://electrostaticrefinishers.com/electrostatic-painting/electrostatic-painting-vs-powder-coating/

  202. http://www.decc.com/coating_terminology.php

  203. https://en.wikipedia.org/wiki/Electrostatic_coating

  204. http://www.electrostaticpainting.org/electrostatic-painting-process.html

  205. http://www.fluoroprecision.co.uk/ptfe/ptfe-technical-information/ptfe-coating-process

  206. http://www.plasticcoatings.co.uk/plastic-coatings-processes/powder-coating.php

  207. http://electro-static.com/index.html

  208. Miranda R (2014) Surface modification by solid state processing. Elsevier, UK

    Google Scholar 

  209. Dini JW (1993) Electrodeposition: the materials science of coatings and substrates. Noyes Publications, USA

    Google Scholar 

  210. Tracton AA (2006) Coatings technology handbook, 3rd edn. Taylor and Francis Group, Boca Raton, FL

    Book  Google Scholar 

  211. Brewer GEF, Hamilton AD (1972) Paint for electrocoating. In: ASTM Gardner-sward paint testing manual, 13th edn. American Society for Testing and Materials, Philadelphia, pp 486–489 (Section 8.10)

    Google Scholar 

  212. Brewer GEF (1973) Electrodeposition of coatings. In: ACS advances in chemistry series. American Chemical Society, Washington, DC, p 119

    Google Scholar 

  213. Brewer GEF (1981) ACS symposium on newer developments in electrocoating. Org Coatings Plast Chem 45:92–113

    Google Scholar 

  214. Chandler RH (1966) Advances in electrophoretic painting Bi or Tri annual abstracts. R. H. Chandler, Braintree, Essex, England

    Google Scholar 

  215. Duffy JI (1982) Electrodeposition processes and equipment. Noyes Data Corp, Park Ridge, NJ

    Google Scholar 

  216. Kardomenos PI, Nordstrom JD (1982) Polymer compositions for catholic electrodeposition coatings. J Coat Technol 54:33–41

    Google Scholar 

  217. Machu W (1978) Handbook of electropainting technology. Electrochemical Publications Ltd., Scotland

    Google Scholar 

  218. Raney MW (1970) Electrodeposition and radiation curing of coatings. Noyes Data Corp, Park Ridge, NJ

    Google Scholar 

  219. Wang T, Tan YJ (2006) Understanding Electrodeposition of polyaniline coatings for corrosion prevention applications using the wire bean electrode method. Corros Sci 48:2274–2290

    Article  Google Scholar 

  220. Hamid ZA, Ghayad IM (2002) Characteristics of electrodeposition of Ni-polyethylene composite coatings. Mater Lett 53:238–243

    Article  Google Scholar 

  221. Cheng Y, Gray KM, David L et al (2012) Characterization of the cathodic electrodeposition of semicrystalline chitosan hydrogel. Mater Lett 87:97–100

    Article  Google Scholar 

  222. Pierleoni D, Xia ZY, Christian M et al (2016) Graphene based coatings on polymer films for gas barrier applications. Carbon 96:503–512

    Article  Google Scholar 

  223. Herrasti P, Kulak AN, Bavykin DV et al (2011) Electrodeposition of polypyrrole-titanate nanotube composites coatings and their corrosion resistance. Electrochim Acta 56:1323–1328

    Article  Google Scholar 

  224. Lin JY, Liao JH, Chou SW (2011) Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim Acta 56:8818–8826

    Google Scholar 

  225. Rapecki T, Stojek Z, Donten M (2013) Nucleation of metals on conductive polymers: electrodeposition of silver in thin polypyrrole films. Electrochim Acta 106:264–271

    Article  Google Scholar 

  226. Moral Vico J, Carretero NM, Perez E et al (2013) Dynamic electrodeposition of aminoacid-polypyrrole on aminoacid-PEDOT substrates: conducting polymer bilayers as electrodes in neutral systems. Electrochim Acta 111:250–260

    Article  Google Scholar 

  227. Chen J, Dong P, Di D et al (2013) Controllable fabrication of 2D colloidal crystal films with polystyrene nanospheres of various diameters by spin coating. Appl Surf Sci 270:6–15

    Article  ADS  Google Scholar 

  228. Yang Y, Li Y, Liu H et al (2014) Electrodeposition of gold nanoparticles onto an etched stainless steel wire followed by a self-assembled monolayer of octanedithiol as a fiber coating for selective solid-phase microextraction. J Chromatogr A 1372:25–33

    Article  Google Scholar 

  229. Li Y, Xu H (2015) Development of a novel graphene/polyaniline electrodeposited coating for on-line solid phase microectraction of aldehydes in human exhaled breath condensate. J Chromatogr A 1395:23–31

    Article  Google Scholar 

  230. Ranjbar Z, Moradian S, Rastegar S (2003) Formation of a percolating cluster in films prepared by cathodic electrodeposition of a mixture of lower and higher molecular weight epoxy-amine adducts. J Colloid Interface Sci 264:420–430

    Article  Google Scholar 

  231. Lammel P, Torun B, Kleber C et al (2013) In-situ AFM study of the electrodeposition of copper on plasma modified carbon fiber-reinforced polymer surfaces. Surf Coat Technol 221:22–28

    Article  Google Scholar 

  232. Wang Z, Zhang X, Gu J et al (2014) Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydr Polym 103:38–45

    Article  Google Scholar 

  233. Ngounou B, Aliyev EH, Guschin DA et al (2007) Parallel synthesis of libraries of anodic and cathodic functionalized electrodeposited paints as immobilization matrix for amperometric biosensors. Bioelectrochemistry 71:81–90

    Article  Google Scholar 

  234. Ejenstam L, Tuominen M, Haapanen J et al (2015) Long-term corrosion protective by a thin nanocomposites coating. Appl Surf Sci. doi:10.1016/j.apsusc.2015.09.238

    Google Scholar 

  235. Zainoldin Z, Harun MK, Bahron H et al (2012) Passive thin film coating through electrodeposition of salicylideneaniline. APCBEE Procedia 3:104–109

    Article  Google Scholar 

  236. Balaji R, Pushpavanam M, Kumar KY et al (2006) Electrodeposition of bronze–PTFE composite coatings and study on their tribological characteristics. Surf Coat Technol 201:3205–3211

    Article  Google Scholar 

  237. Wolfs M, Darmanin T, Guittard F (2014) Effect of hydrocarbon chain branching in the elaboration of superhydrophobic materials by electrodeposition of conductive polymers. Surf Coat Technol 259:594–598

    Article  Google Scholar 

  238. Lacovetta D, Tam J, Erb U (2015) Synthesis, structure and properties of superhydrophobic nickel–PTFE nanocomposites coatings made by electrodeposition. Surf Coat Technol 279:134–141

    Article  Google Scholar 

  239. Rastegar S, Ranjbar Z (2006) Cathodically electro-deposited carbon-black-epoxy composite films as primer in two-coat electro-deposition. Prog Org Coat 56:234–239

    Article  Google Scholar 

  240. Wang T, Qi S, Ren B et al (2007) Preparation and surface characteristics of low-temperature curing fluorinated cathodic electrodeposition coating. Prog Org Coat 60:132–139

    Article  Google Scholar 

  241. Bucko M, Miskovic Stankovic V, Rogan J et al (2015) The protective properties of epoxy coating electrodeposited on Zn–Mn alloy substrate. Prog Org Coat 79:8–16

    Article  Google Scholar 

  242. Gonzalez MB, Saidman SB (2015) Electrodeposition of bilayered polypyrrole on 316 L stainless steel for corrosion prevention. Prog Org Coat 78:21–27

    Article  Google Scholar 

  243. Hollander A, Amberg Schwab S, Miesbauer O et al (2015) Process control for thin organic coatings using fluorescence dyes. Prog Org Coat 88:71–74

    Article  Google Scholar 

  244. Xu J, Zhang Y, Zhang D et al (2015) Electrosynthesis of PAni/PPy coatings doped by phosphotungstate on mild steel and their corrosive resistances. Prog Org Coat 88:84–91

    Article  Google Scholar 

  245. Bass M, Freger V (2015) Facile evaluation of coating thickness on membrane using ATR-FTIR. J Membr Sci 492:348–354

    Article  Google Scholar 

  246. Mollahosseini A, Noroozian E (2009) Electrodeposition of a highly adherent and thermally stable polypyrrole coating on steel from aqueous polyphosphate solution. Synth Met 159:1247–1254

    Article  Google Scholar 

  247. Merisalu M, Kahro T, Kozlova J et al (2015) Graphene-polypyrrole thin hybrid corrosion resistant coatings for copper. Synth Met 200:16–23

    Article  Google Scholar 

  248. Zhitomirsky I, Petric A (2000) Cathodic electrodeposition of polymer films and organoceramic films. Mater Sci Eng B 78:125–130

    Article  Google Scholar 

  249. Ranjbar Z, Moradian S (2003) Characteristics and deposition behavior of epoxy-amine adducts in cathodic electrodeposition as a function of the degree of neutralization. Colloids Surf A 219:147–159

    Article  Google Scholar 

  250. Chen Q, Li W, Goudouri OM et al (2015) Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential. Colloids Surf B 130:199–206

    Article  Google Scholar 

  251. Wang Y, Guo X, Pan R et al (2015) Electrodeposition of chitosan/gelatin/nanosilver: a new method for constructing biopolymer/nanoparticles composite films with conductivity and antibacterial activity. Mater Sci Eng C 53:222–228

    Article  Google Scholar 

  252. Yuan HJ, Lu CX, Zhang SC et al (2015) Preparation and characterization of a polyimide coating on the surface of carbon fibers. New Carbon Mater 30:115–121

    Article  Google Scholar 

  253. Mo SJ, Zhang J, Liang D et al (2013) Study on pyrolysis characteristics of cross linked polyethylene material cable. Procedia Eng 52:588–592

    Article  Google Scholar 

  254. Bichler C, Kerbstadt T, Landowski HC et al (1999) Plasma-modified interfaces between polypropylene films and vacuum roll-to-roll coated thin barrier layers. Surf Coat Technol 112:373–378

    Article  Google Scholar 

  255. Hao S, Wu J, Lin J et al (2012) Modification of photocathode of dye-sensitized nanocrystalline solar cell with platinum by vacuum coating, thermal decomposition and electroplating. Compos Interfaces 13:899–909

    Article  Google Scholar 

  256. Chapter 4: Composites. In: Advanced materials in Japan. Elsevier Advanced Technology, UK, pp 73–86

    Google Scholar 

  257. Dow lowers filtration costs with solka-floc/dicalite precoating. In: Dicalite technical report, California, p 18A (Ind Eng Chem)

    Google Scholar 

  258. Landau LD, Levich BG (1942) Acta Physiochim 17:42–54

    Google Scholar 

  259. Strawbridge I, James PF (1986) J Non-Cryst Solids 82:366–372

    Article  ADS  Google Scholar 

  260. http://www.apexicindia.com/en/technologies/dip-coating-technology8

  261. http://www.biolinscientific.com/technology/dip-coating/10

  262. Brinker CJ, Hurd AJ, Ward KJ (1988) In: Mackenzie JD, Ulrich DR (eds) Ultrastructure processing of advanced ceramics. Wiley, NY, p 223

    Google Scholar 

  263. Stern O (1924) Elektrochem, 508

    Google Scholar 

  264. Bravo J, Zhai L, Wu Z et al (2007) Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23:7293–7298

    Article  Google Scholar 

  265. Li H, Chen C, Zhang S et al (2012) The use of layer by layer assembly coatings of hyaluronic acid and cationized gelatin to improve the biocompatibility of poly(ethylene terephthalate) artificial ligaments for reconstruction of the anterior cruciate ligament. Acta Biometerialia 8:4007–4019

    Article  Google Scholar 

  266. Schroder H (1969) Physics of thin films, vol 5. Academic Press, NY, London, pp 87–141

    Google Scholar 

  267. Dislich H (1971) Angew Chem Int 6:363

    Google Scholar 

  268. da Conceicao TF, Scharnagl N, Dietzel W et al (2011) Corrosion protection of magnesium AZ31 alloy using poly(ether imide)[PEI] coatings prepared by the dip coating method: influence of solvent and substrate pre-treatment. Corros Sci 53:338–346

    Article  Google Scholar 

  269. Fang HW, Li KY, Su TL et al (2008) Dip coating assisted polylactic acid deposition on steel surface: film thickness affected by drag force and gravity. Mater Lett 62:3739–3741

    Article  Google Scholar 

  270. Li X, Li Q, Chen GX (2014) Alkali metal surfactant-facilitated formation of thick boron nitride layers on carbon nanotubes by dip coating. Mater Lett 134:38–41

    Article  Google Scholar 

  271. Yimsiri P, Mackley MR (2006) Spin and dip coating of light emitting polymer solutions: matching experiment with modeling. Chem Eng Sci 61:3496–3505

    Article  Google Scholar 

  272. Benkreira H, Khan MI (2008) Air entrainment in dip coating under reduced air pressures. Chem Eng Sci 63:448–459

    Article  Google Scholar 

  273. Cengiz U, Erbil HY (2014) Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent. Appl Surf Sci 292:591–597

    Article  ADS  Google Scholar 

  274. Contreras CB, Chagas G, Strumia MC et al (2014) Permanent superhydrophobic polypropylene nanocomposites coatings by a simple one-step dipping process. Appl Surf Sci 307:234–240

    Article  Google Scholar 

  275. Rioboo R, Voue M, Vaillant A et al (2008) Langmuir 24:9508

    Article  Google Scholar 

  276. Gao L, He J (2013) A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings. J Colloid Interface Sci 400:24–30

    Article  Google Scholar 

  277. Xu QF, Wang JN, Sanderson KD (2010) ACS Nano 4:2201

    Article  Google Scholar 

  278. Li X, Du X, He J (2010) Langmuir 26:13528

    Article  Google Scholar 

  279. Xu L, He J (2012) Langmuir 28:7512

    Article  MathSciNet  Google Scholar 

  280. Camargo KC, Michels AF, Rodembusch FS et al (2012) Chem Commun 48:4992

    Article  Google Scholar 

  281. Xu L, Gao L, He J (2012) RSC Adv 2:12764

    Article  Google Scholar 

  282. Catauro M, Papale F, Bollino F (2015) Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol-gel dip coating for surface modification of titanium implants. J Non-Cryst Solids 415:9–15

    Article  ADS  Google Scholar 

  283. Hao Y, Sano R, Shimomura A et al (2014) Reorganization of the surface geometry of hollow-fiber membranes using dip-coating and vapor-induced phase separation. J Membr Sci 460:229–240

    Article  Google Scholar 

  284. Kohoutek T, Wagner T, Orava J et al (2004) Amorphous films of Ag-As-S system prepared by spin-coating technique, preparation techniques and films physico-chemical properties. Vacuum 76:191–194

    Article  ADS  Google Scholar 

  285. Flack WW, Soong DS, Bell AT et al (1984) A mathematical model for spin coating of polymer resists. J Appl Phys 56:1199–1206

    Article  ADS  Google Scholar 

  286. Dong Q, Zhou Y, Pei J et al (2010) All-spin coating vacuum free processed semi transparent inverted polymer solar cells with PEDOT: PSS anode and PAH-D interfacial layer. Org Electron 11:1327–1331

    Article  Google Scholar 

  287. Tsai ML, Liu CY, Hsu MA et al (2003) White light emission from single component polymers fabricated by spin coating. Appl Phys Lett 82:550–552

    Article  ADS  Google Scholar 

  288. Jiang P, McFarland MJ (2004) Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc 42:13778–13786

    Article  Google Scholar 

  289. Barletta M, Gisario A, Rubino G (2011) Scratch response of high-performance thermoset and thermoplastic powders deposited by the electrostatic spray and hot dipping fluidized bed coating methods: the role of the contact condition. Surf Coat Technol 205:5186–5198

    Article  Google Scholar 

  290. Gong G, Wang J, Nagasawa H et al (2013) Sol-gel spin coating process to fabricate a new type of uniform and thin organosilica coating on polysulfones film. Mater Lett 109:130–133

    Article  Google Scholar 

  291. Dimitriou MD, Sundaram HS, Cho Y et al (2012) Amphiphilic block copolymer surface composition: effects of spin coating versus spray coating. Polymer 53:1321–1327

    Article  Google Scholar 

  292. Soz CK, Yilgor E, Yilgor I (2015) Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica. Polymer 62:118–128

    Article  Google Scholar 

  293. Dario AF, Macia HB, Petri DFS (2012) Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight. Thin Solid Films 524:185–190

    Article  ADS  Google Scholar 

  294. Iyore OD, Roodenko K, Winkler PS et al (2013) Comparison of neat and photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene thin film dielectrics formed by spin coating. Thin Solid Films 548:597–602

    Article  ADS  Google Scholar 

  295. Herrera MA, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501

    Article  Google Scholar 

  296. Syed JA, Lu H, Tang S et al (2015) Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique. Appl Surf Sci 325:160–169

    Article  ADS  Google Scholar 

  297. Kim BJ, Han SH, Park JS (2015) Properties of CNTs coated by PEDOT: PSS films via spin coating and electrophoretic deposition methods for flexible transparent electrodes. Surf Coat Technol 271:22–26

    Article  Google Scholar 

  298. Miao JT, Sun R, Yan BL et al (2014) Adjustable third order nonlinear optical properties of the spin coating phenoxazinium–PMMA films. Mater Chem Phys 147:232–237

    Article  Google Scholar 

  299. Wu X, Wyman I, Zhang G et al (2015) Preparation of superamphiphobic polymer-based coatings via spray and dip coating strategies. Prog Org Coat. doi:10.1016/j.porgcoat.2015.08.008

    Google Scholar 

  300. Jasinski P, Molin S, Gazda M et al (2009) Applications of spin coating of polymer precursor and slurry suspensions for solid oxide fuel cell fabrication. J Power Sour 194:10–15

    Article  Google Scholar 

  301. Chang H, Wang P, Li H et al (2013) Solvent vapor assisted spin coating: a simple method to directly achieve high mobility from P3HT based thin film transistors. Synth Met 184:1–4

    Article  Google Scholar 

  302. Xu L, Yamamoto A (2012) Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf B 93:67–74

    Article  Google Scholar 

  303. Jayamurugan P, Ponnuswamy V, Rao YVS et al (2015) Influence of spin coating rate on the thickness, surface modification and optical properties of water dispersed PPy composite thin films. Mater Sci Semicond Process 39:205–210

    Article  Google Scholar 

  304. Seah CM, Chai SP, Ichikawa S et al (2013) Control of iron nanoparticles size by manipulating PEG-ethanol colloidal solutions and spin coating parameters for the growth of single walled carbon nanotubes. Particuology 11:394–400

    Article  Google Scholar 

  305. Sabitha C, Joe IH (2015) Synthesis and characterization of PMMA adherent ZnS thin films by spin coating method. Mater Today Proc 2:1046–1050

    Article  Google Scholar 

  306. Kobayashi Y, Oda A (2014) Fabrication of barium titanate nanoparticles/poly(methylmethacrylate) composite films by a combination of deposition process and spin coating technique. J Mater Res Technol 3:290–295

    Article  Google Scholar 

  307. http://www.ytca.com/spin_coating

  308. Youssef HA, Ali ZI, Zahran AH (2001) Electron beam structure modification of poly(vinyl chloride)-wire coating. Polym Degrad Stab 74:213–218

    Article  Google Scholar 

  309. Matallah H, Townsend P, Webster MF (2000) Viscoelastic multi-mode simulations of wire coating. J Nonnewton Fluid Mech 90:217–241

    Article  MATH  Google Scholar 

  310. Shah RA, Islam S, Siddiqui AM (2013) Exact solution of a differential equation arising in the wire coating analysis of an unsteady second grade fluid. Math Comput Model 57:1284–1288

    Article  MathSciNet  Google Scholar 

  311. White LK (1986) Spun-on contour coating characterizations for advanced optical lithography. Polym Eng Sci 26:1135–1139

    Article  Google Scholar 

  312. Owens MS, Vinjamur M, Scriven LE et al (2011) Misting of non-newtonian liquids in forward roll coating. J Nonnewton Fluid Mech 166:1123–1128

    Google Scholar 

  313. Echendu SOS, Tamaddon Jahromi HR, Webster MF (2014) Modelling polymeric flows in reverse roll coating process with dynamic wetting lines and air-entrainment: FENE and PTT solutions. J Nonnewton Fluid Mech 214:38–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajasekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sathish Kumar, P., Rajasekar, R., Pal, S.K., Nayak, G.C., Syed Ismail, S.M.R. (2016). Paints and Coating of Multicomponent Product. In: Kim, J., Thomas, S., Saha, P. (eds) Multicomponent Polymeric Materials. Springer Series in Materials Science, vol 223. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7324-9_7

Download citation

Publish with us

Policies and ethics