Skip to main content

Polyunsaturated Fatty Acids from Algae

  • Chapter

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 26))

Abstract

The n-3 long chain polyunsaturated fatty acids (LC-PUFAs) are well studied bioactive molecules with important health benefits. These have gained tremendous importance and the global demand of these-PUFAs have risen during last decade. As humans other animals do not carry the require genes necessary for the formation of n-3 fatty acids these must be obtained from other natural sources. The current natural source of n-3 PUFAs is fatty fishes which accumulate these fatty acids in their oil due to its alga rich diet. In recent past excessive harvesting of sea fishes for its health benefits have rendered fisheries to be unsustainable making it important to explore alternate sustainable n-3 PUFA sources. Eukaryotic algae are a very diverse group of organisms capable of producing various bioactive compounds. Lipid analyses of various algae have shown the presence of n-3PUFAs especially EPA and DHA. Various genera of algae such as Nannochloropsis, Schizochytrium, Isochrysis and Phaeodactylum have received due attention for their ability to produce n-3 LC-PUFAs. Isolation and characterization of various desaturases, elongases and other genes involved in n-3 PUFA biosynthesis has been a major target to understand lipid biosynthesis in algae. Marine microalgae are rapidly gaining identity as the alternate natural source for industrial production of EPA and DHA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

arachidic acid (20:0)

ALA:

α-linolenic acid (18:3n-3)

ARA:

arachidonic acid (20:4n-6)

DGLA:

dihomo-γ-linolenic acid (20:3n-6)

DHA:

docosahexaenoic acid (20:6n-3)

DPA:

docosapentaenoic acid (22:5n-3)

EDA:

eicosadienoic acid (20:2n-6)

EPA:

eicosapentaenoic acid (20:5n-3)

ETA:

eicosatetraenoic acid (20:4n-3)

FA(s):

fatty acid(s)

GLA:

γ-linolenic acid (18:3n-6)

HAD:

hexadecadienoic acid (16:2n-4)

HTA:

hexadecatrienoic acid (16:3n-4)

LA:

linoleic acid (18:2n-6)

VLC-PUFA(s):

very long chain polyunsaturated fatty acid(s)

OA:

oleic acid (18:1n-9)

PA:

Palmitic acid (16:0)

PUFA(s):

polyunsaturated fatty acid(s), >C18

SA:

stearic acid (18:0)

SDA:

stearidonic acid (18:4n-3)

AT:

acyl transferase

TAG:

triacylglycerol

References

  • Blanchemain A, Grizeau D (1999) Increased production of eicosapentaenoic acid by Skeletonema costatum cells after decantation at low temperature. Biotechnol Tech 13:497–501

    Article  CAS  Google Scholar 

  • Bondioli P, Bella LD, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsissp. F & M-M24 and Tetraselmissuecica F&M-M33. Bioresour Technol 114:567–572

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2010) Kingdoms protozoa and chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345

    Article  PubMed Central  PubMed  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Chao EE (1994) Thraustochytrids are chromists, not fungi: 18s rRNA signatures of Heterokonta. Philos Trans R Soc Lond B Biol Sci 346:387–397

    Article  CAS  Google Scholar 

  • Chepurnov VA, Mann DG, von Dassow P, Vanormelingen P, Gillard J, Inze D, Sabbe K, Vyverman W (2008) In search of new tractable diatoms for experimental biology. Bioessays 30:692–702

    Article  PubMed  Google Scholar 

  • Das UN (1999) Essential fatty acids in health and disease. J Assoc Physicians India 47:906–911

    CAS  PubMed  Google Scholar 

  • Domergue F, Lerchl J, Zahringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front–end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Google Scholar 

  • Domergue F, Abbadi A, Ott C, Zank TK, Zähringer U, Heinz E (2003) Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J Biol Chem 278:35115–35126

    Article  CAS  PubMed  Google Scholar 

  • Domergue F, Abbadi A, Zahringer U, Moreau H, Heinz E (2005) In vivo characterization of the first acyl-CoA Δ6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem J 389:483–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochemi Biotechnol 57:223–231

    Article  Google Scholar 

  • Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJ (2012) The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. Plant J 70:1004–1014

    Article  CAS  PubMed  Google Scholar 

  • FAO Fisheries and Aquaculture Department (2012) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO/WHO Expert Committee (1994) Food and nutrition paper 57. FAO, Rome

    Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  CAS  PubMed  Google Scholar 

  • Giusto NM, Pasquare SJ, Salvador PI, Roque MG (2000) Lipid metabolism in vertebrate retinal rod outer segments. Prog Lipid Res 39:315–391

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Moheimani NR, Borowitzka MA (eds) Developments in applied phycology 5, algae for biofuels and energy. Springer, Dordrecht, pp 17–36

    Chapter  Google Scholar 

  • Hibbeln JR, Nieminen LRG, Blasbalg TL, Riggs JA, Lands WEM (2006) Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity. Am J Clin Nutr 83:1483S–1493S

    CAS  PubMed  Google Scholar 

  • Hoffmann M, Wagner M, Abbadi A, Fulda M, Feussner I (2008) Metabolic engineering of omega 3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem 283:22352–22362

    Article  CAS  PubMed  Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoicacid (DHA). Pharmacol Res 40:211–225

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld MR, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgaltriacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:521–639

    Article  Google Scholar 

  • Huerlimann R, Heimann K (2013) Comprehensive guide to acetyl-carboxylases in algae. Crit Rev Biotechnol 33:49–65

    Article  CAS  PubMed  Google Scholar 

  • Huisman M, Van Beusekom CM, Lanting CI, Nijerboer HJ, Muskiet FAJ, Boersma ER (1996) Triglycerides, fatty acids, sterols, mono- and disaccharides and sugar alcohols in human milk and current types of infant formula milk. Eur J Clin Nutr 50:255–260

    CAS  PubMed  Google Scholar 

  • Jiang HM, Gao KS (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum(Bacillariophyceae). J Phycol 40:651–654

    Article  CAS  Google Scholar 

  • Kang JX, Leaf A (1996) The cardiac antiarrhythmic effects of polyunsaturated fatty acid. Lipids 31:S41–S44

    Article  CAS  PubMed  Google Scholar 

  • Kelly PB, Reiser R, Hood DW (1959) The origin of the marine polyunsaturated fatty acids. Composition of some marine plankton. J Am Oil Chem Soc 36:104–106

    Article  CAS  Google Scholar 

  • Kendrick A, Ratledge C (1992) Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 27:15–20

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91:905–915

    Article  CAS  PubMed  Google Scholar 

  • Kilian O, Vick B (2012) Algal elongases. Patent US2012/0277418A1, 1 Nov 2012

    Google Scholar 

  • Kilian O, Vick B (2013) Algal desaturases. Patent US8440805B2, 14 May 2013

    Google Scholar 

  • Kremmyda LS, Tvrzicka E, Stankova B, Zak A (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease-a review. Part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155:195–218

    Article  CAS  PubMed  Google Scholar 

  • Kyle D (1992) Microbial oil mixtures and uses thereof. Patent: WO 92/12711

    Google Scholar 

  • Kyle D, Reeb SE, Sicotte VJ (1991) Docosahexaenoic acid, methods for its production and compounds containing the same. Patent: WO91/11918

    Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of Thraustochytrids. Mar Biotechnol 1:580–587

    Article  CAS  PubMed  Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  PubMed Central  PubMed  Google Scholar 

  • Nasopoulou C, Zabetakis I (2012) Benefits of fish oil replacement by plant originated oils in compounded fish feeds.A review. LWT-Food Sci Technol 47:217–224

    Article  CAS  Google Scholar 

  • Nikolaü BJ, Ohlrogge JB, Wurtele ES (2003) Plant biotin containing carboxylases. Arch Biochem Biophys 141:211–222

    Article  Google Scholar 

  • Olsen Y (2011) Resources for fish feed in future mariculture. Aquacult Environ Interact 1:187–200

    Article  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsissp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Plourde M, Cunnane SC (2007) Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 32:619–634

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylumtricornutum. Metab Eng 13:89–95

    Article  CAS  PubMed  Google Scholar 

  • Renaud S, Parry D, Thinh LV (1994) Microalgae for use in tropical aquaculture I: gross chemical and fatty acid composition of twelve species of microalgae form the North territory. Aust J Appl Phycol 6:337–345

    Article  CAS  Google Scholar 

  • Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77:198–208. doi:10.1111/tpj.12378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryall K, Harper JT, Keeling PJ (2003) Plastid-derived type II fatty acid biosynthetic enzymes in chromists. Gene 313:139–148

    Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape a software envirnoment for inetgrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Sijtsma L, de Swaaf ME (2004) Biotechnological production and application of the x-3 polyunsaturated fatty acid docosahexaenoic acid. App Microbiol Biotechnol 64:146–153

    Article  CAS  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Ward AP (1997) Microbial production of docosahexaenoic acid (DHA, C22:6). Adv Appl Microbiol 45:271–312

    Article  CAS  PubMed  Google Scholar 

  • Sinn N, Milte CM, Street SJ, Buckley JD, Coates AM, Petkov J, Howe PRC (2012) Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr 107:1682–1693

    Article  CAS  PubMed  Google Scholar 

  • Tan CK, Johns MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic acid production. J Appl Phycol 8:59–64

    Article  CAS  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    Article  PubMed  Google Scholar 

  • Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732

    Article  CAS  Google Scholar 

  • Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA, Graham IA (2005) Fatty acid desaturases from the microalga Thalassiosirapseudonana. FEBS J 272:3401–3412

    Article  CAS  PubMed  Google Scholar 

  • Torstensen BE, Bell JG, Rosenlund G, Henderson RJ, Graff IE, Tocher DR, Lie O, Sargent JR (2005) Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. J Agric Food Chem 53:10166–10178

    Article  CAS  PubMed  Google Scholar 

  • Tur JA, Bibiloni MM, Sureda A, Pons A (2012) Dietary sources of omega 3 fatty acids: public health risks and benefits. Br J Nutr 107:S23–S52

    Article  CAS  PubMed  Google Scholar 

  • Van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology. University Press, Cambridge

    Google Scholar 

  • Wan C, Bai F-W, Zhao X-Q (2013) Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga NannochloropsisoceanicaDUT01. Biochem Eng J 78:32–38

    Article  CAS  Google Scholar 

  • Ward OP (1995) Microbial production of long-chain PUFAs. Inform 6:683–688

    Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Wen Z-Y, Chen F (2000) Production potential of eicosapentaenoic acid by the diatom Nitzschialaevis. Biotechnol Lett 22:727–733

    Article  CAS  Google Scholar 

  • Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotech Adv 21:273–294

    Article  CAS  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytriumsp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    Article  CAS  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by SchizochytriumlimacinumSR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1989) Omega-3 fatty acids : alternative sources of production. Proc Biochem 24:117–125

    CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1991a) Growth of and omega-S fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Envir Microbiol 57:419–426

    CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1991b) Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry 30:2963–2967

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mishra, G. (2015). Polyunsaturated Fatty Acids from Algae. In: Sahoo, D., Seckbach, J. (eds) The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7321-8_18

Download citation

Publish with us

Policies and ethics