Skip to main content

Part of the book series: Focus on Structural Biology ((FOSB,volume 9))

Abstract

This chapter summarizes some important research works on prion AGAAAAGA, and presents three prion AGAAAAGA amyloid fibril models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abskharon RN, Giachin G, Wohlkonig A, Soror SH, Pardon E, Legname G, Steyaert J (2014) Probing the N-terminal β-sheet conversion in the crystal structure of the human prion protein bound to a nanobody. J Am Chem Soc 136(3):937–944

    Article  CAS  PubMed  Google Scholar 

  2. Brown DR (2000) Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci 15(1):66–78

    Article  CAS  PubMed  Google Scholar 

  3. Chabry J, Caughey B, Chesebro B (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem 273(21):13203–13207

    Article  CAS  PubMed  Google Scholar 

  4. Cheng HM, Tsai TWT, Huang WYC, Lee HK, Lian HY, Chou FC, Mou Y, Chu J, Chan JC (2011) Steric zipper formed by hydrophobic peptide fragment of Syrian hamster prion protein. Biochem 50(32):6815–6823

    Article  CAS  Google Scholar 

  5. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120(1):97–120

    Article  CAS  PubMed  Google Scholar 

  6. Gasset M, Baldwin MA, Lloyd DH, Gabriel JM, Holtzman DM, Cohen F, Fletterick R, Prusiner SB (1992) Predicted α-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci U S A 89(22):10940–10944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Haigh CL, Edwards K, Brown DR (2005) Copper binding is the governing determinant of prion protein turnover. Mol Cell Neurosci 30(2):186–196

    Article  CAS  PubMed  Google Scholar 

  8. Holscher C, Delius H, Burkle A (1998) Overexpression of nonconvertible PrPC delta114–121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrPSc accumulation. J Virol 72(2):1153–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R (1999) The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J Neurochem 73(4):1557–1565

    Article  CAS  PubMed  Google Scholar 

  10. Jones EM, Wu B, Surewicz K, Nadaud PS, Helmus JJ, Chen S, Jaroniec CP, Surewicz WK (2011) Structural polymorphism in amyloids: new insights from studies with Y145Stop prion protein fibrils. J Biol Chem 286(49):42777–42784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kourie JI (2001) Mechanisms of prion-induced modifications in membrane transport properties: implications for signal transduction and neurotoxicity. Chem Biol Interact 138(1):1–26

    Article  CAS  PubMed  Google Scholar 

  12. Kourie JI, Kenna BL, Tew D, Jobling MF, Curtain CC, Masters CL, Barnham KJ, Cappai R (2003) Copper modulation of ion channels of PrP[106–126] mutant prion peptide fragments. J Membr Biol 193(1):35–45

    Article  CAS  PubMed  Google Scholar 

  13. Lee SW, Mou Y, Lin SY, Chou FC, Tseng WH, Chen C, Lu CYD, Yu SSF, Chan JCC (2008) Steric zipper of the amyloid fibrils formed by residues 109 to 122 of the Syrian hamster prion protein. J Mol Biol 378(5):1142–1154

    Article  CAS  PubMed  Google Scholar 

  14. Ma BY, Nussinov R (2002) Molecular dynamics simulations of alanine rich β-sheet oligomers: insight into amyloid formation. Protein Sci 11(10):2335–2350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Norstrom EM, Mastrianni JA (2005) The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation. J Biol Chem 280(29):27236–27243

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki K, Gaikwad J, Hashiguchi S, Kubota T, Sugimura K, Kremer W, Kalbitzer HR, Akasaka K (2008) Reversible monomer-oligomer transition in human prion protein. Prion 2(3):118–122

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  CAS  PubMed  Google Scholar 

  18. Wagoner VA, Cheon M, Chang I, Hall CK (2011) Computer simulation study of amyloid fibril formation by palindromic sequences in prion peptides. Proteins Struct Funct Bioinf 79(7):2132–2145

    Article  CAS  Google Scholar 

  19. Wegner C, Romer A, Schmalzbauer R, Lorenz H, Windl O, Kretzschmar HA (2002) Mutant prion protein acquires resistance to protease in mouse neuroblastoma cells. J Gen Virol 83(Pt 5):1237–1245

    Article  CAS  PubMed  Google Scholar 

  20. Zanuy D, Ma B, Nussinov R (2003) Short peptide amyloid organization: stabilities and conformations of the islet amyloid peptide NFGAIL. Biophys J 84(3):1884–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhang JP (2011) Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing. J Mol Model 17(1):173–179

    Article  CAS  PubMed  Google Scholar 

  22. Zhang JP (2011) Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins. J Theory Biol 269(1):88–95

    Article  CAS  Google Scholar 

  23. Zhang JP (2011) Molecular dynamics – practical application – mechanism underlying the resistance to prion diseases in rabbits. LAP Lambert Academic Publishing: Saarbrücken. ISBN:978-3-8465-4843-1

    Google Scholar 

  24. Zhang JP (2011) Practical global optimization computing methods in molecular modelling – for atom-resolution structures of amyloid fibrils, 1st Version. LAP Lambert Academic Publishing: Saarbrücken. ISBN:978-3-8465-2139-7

    Google Scholar 

  25. Zhang JP (2012) Molecular dynamics studies on the structural stability of wild-type rabbit prion protein: surface electrostatic charge distributions. In: Battik C, Belhassine K (eds) Bioinformatics research: new developments. NOVA Science Publishers, New York, Chapter 7, pp 131–8. ISBN:978-1-61942-363-3

    Google Scholar 

  26. Zhang JP, Sun J, Wu CZ (2011) Optimal atomic-resolution structures of prion AGAAAAGA amyloid fibrils. J Theory Biol 279(1):17–28

    Article  CAS  Google Scholar 

  27. Zhang X, Zhou X, Ding T, Gan W, Yang L, Yin X, Zhao D (2012) Polymorphisms of SPRN (shadow of prion protein homology) in three breeds of sheep in China. Virus Genes 44(3):548–550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J. (2015). A Summary of the Research Works on AGAAAAGA. In: Molecular Structures and Structural Dynamics of Prion Proteins and Prions. Focus on Structural Biology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7318-8_18

Download citation

Publish with us

Policies and ethics