Skip to main content

Particle Swarm Global Optimization Search Algorithm

  • Chapter
  • 1165 Accesses

Part of the book series: Focus on Structural Biology ((FOSB,volume 9))

Abstract

Particle Swarm Optimization (PSO) was originally intended for simulating social behaviour, as a stylized representation of the movement of organisms in a bird flock or fish school (en.wikipedia.org/wiki/Particle_swarm_optimization and all references therein). “The key idea is to have a swarm of interacting particles, each representing a candidate solution to a given optimization problem. Thus, particles are embedded in the search space and explore the solution space by flying around. Moreover, the particles are also attracted to high fit regions located by other particles” (Luo et al., J Am Chem Soc 133(40):16285–16290, 2011). Particle has position, velocity and acceleration, but we may look at it as without volume and mass; the PSO derivative-free global optimization algorithm can be used in molecular crystal structure prediction and materials’ construction. One successful promise of PSO in crystal structure determination/identification or in designing the multi-functional materials is the package CALYPSO (Guillaume et al., Nat Phys 7(3):211–214, 2011; Li et al., J Phys Chem C 114(49):21745–21749, 2010; Liu et al., Phys Lett A 375(3):771–774, 2011; Luo et al., J Am Chem Soc 133(40):16285–16290, 2011; Lv et al., Phys Rev Lett 106:15503–15506, 2011; Wang et al., Phys Rev B 82(9):094116, 2010; Wang et al., J Chem Phys 137(22):224108, 2012; Zhao et al., ACS Nano 5(9):7226–7234, 2011; Zhu et al., Phys Rev Lett 106(14):145501–145504, 2011), which requires only chemical compositions and their given external conditions (e.g., pressure and temperature).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ai YS, Liu PC, Zheng TY (1998) Adaptive hybrid global inversion algorithm. Sci China (Series D) 41(2):137–143

    Article  Google Scholar 

  2. Branch MA, Coleman TF, Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput 21(1):1–23

    Article  Google Scholar 

  3. Byrd RH, Schnabel RB, Schultz GA (1987) A trust region algorithm for nonlinearly constrained optimization. SIAM J Numer Anal 24(5):1152–1170

    Article  Google Scholar 

  4. Byrd RH, Schnabel RB, Shultz GA (1988) Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math Program 40(1–3):247–263

    Article  Google Scholar 

  5. Coleman TF, Verma A (2001) A preconditioned conjugate gradient approach to linear equality constrained minimization. Comput Optim Appl 20(1):61–72

    Article  Google Scholar 

  6. Conn AR, Gould NIM, Toint PL (2000) Trust-region methods (MPS-SIAM series on optimization). SIAM, Philadelphia. ISBN:978-0-898714-60-9

    Book  Google Scholar 

  7. Goldfeld SM, Quandt RE, Trotter HF (1966) Maximization by quadratic hill-climbing. Econometrica 34(3):541–551

    Article  Google Scholar 

  8. Guillaume CL, Gregoryanz E, Degtyareva O, McMahon MI, Hanfland M, Evans S, Guthrie M, Sinogeikin SV, Mao HK (2011) Cold melting and solid structures of dense lithium. Nature Phys 7(3):211–214

    Article  CAS  Google Scholar 

  9. Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Quart Appl Math 2:164–166

    Google Scholar 

  10. Li PF, Gao GY, Wang YC, Ma YM (2010) Crystal structures and exotic behavior of magnesium under pressure. J Phys Chem C 114(49):21745–21749

    Article  CAS  Google Scholar 

  11. Liu HY, Li Q, Zhu L, Ma YM (2011) Superhard and superconductive polymorphs of diamond-like BC3. Phys Lett A 375(3):771–774

    Article  CAS  Google Scholar 

  12. Luo XY, Yang JH, Liu HY, Wu XJ, Wang YC, Ma YM, Wei SH, Gong XG, Xiang HJ (2011) Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc 133(40):16285–16290

    Article  CAS  PubMed  Google Scholar 

  13. Lv J, Wang YC, Zhu L, Ma YM (2011) Predicted Novel high-pressure phases of lithium. Phys Rev Lett 106:15503–15506

    Article  Google Scholar 

  14. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441

    Article  Google Scholar 

  15. Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Peptide Lett 17(10):1207–1214

    Article  CAS  Google Scholar 

  16. Powell MJD (1970) A new algorithm for unconstrained optimization. In: Rosen JB, Mangassarian OL, Ritter K (eds) Nonlinear programming. Academic, New York, pp 31–66

    Google Scholar 

  17. Powell MJD (1970) A Fortran subroutine for solving systems of nonlinear algebraic equations. In: Rabinowitz P (ed) Numerical methods for nonlinear algebraic equations. Gordon and Breach, London, Chapter 7, pp 115–161

    Google Scholar 

  18. Sorensen DC (1994) Minimization of a large scale quadratic function subject to an ellipsoidal constraint. Department of Computational and Applied Mathematics, Rice University, Technical Report TR94-27

    Google Scholar 

  19. Steihaug T (1983) The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal 20(3):626–637

    Article  Google Scholar 

  20. Wang YC, Lv J, Zhu L, Ma YM (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82(9):094116

    Article  Google Scholar 

  21. Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H, Ma Y (2012) An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys 137(22):224108. doi:10.1063/1.4769731

    Article  PubMed  Google Scholar 

  22. Xin B, Chen J, Pan F (2009) Problem difficulty analysis for particle swarm optimization: deception and modality. In: 2009 proceedings of the 1st ACM/SIGEVO summit on genetic and evolutionary computation, Shanghai, pp 623–630. ISBN:978-1-60558-326-6, doi:10.1145/1543834.1543919

    Google Scholar 

  23. Yu HF, Wang DW (2008) Research on food-chain algorithm and its parameters. Front Electr Electron Eng China 3(4):394–398

    Article  Google Scholar 

  24. Yuan YX (2000) A review of trust region algorithms for optimization. In: ICIAM 99: proceedings of the fourth international congress on industrial & applied mathematics, Edinburgh. Oxford University Press, Oxford, pp 271–282. doi:10.1.1.45.9964

    Google Scholar 

  25. Zhao ZS, Xu B, Wang LM, Zhou XF, He JL, Liu ZY, Wang HT, Tian YJ (2011) Three dimensional carbon-nanotube polymers. ACS Nano 5(9):7226–7234

    Article  CAS  PubMed  Google Scholar 

  26. Zhu L, Wang H, Wang YC, Lv J, Ma YM, Cui QL, Ma YM, Zou GT (2011) Substitutional alloy of Bi and Te at high pressure. Phys Rev Lett 106(14):145501–145504

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J. (2015). Particle Swarm Global Optimization Search Algorithm. In: Molecular Structures and Structural Dynamics of Prion Proteins and Prions. Focus on Structural Biology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7318-8_17

Download citation

Publish with us

Policies and ethics