Skip to main content

The Hydrophobic Region PrP(109–136)

  • Chapter
  • 1167 Accesses

Part of the book series: Focus on Structural Biology ((FOSB,volume 9))

Abstract

Prion diseases , traditionally referred to as TSE, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep, BSE or ‘mad-cow’ disease in cattle, and CJD, GSS, FFI and Kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrPC) into insoluble abnormally folded infectious prions (PrPSc). The hydrophobic region PrP(109–136) controls the formation into diseased prions: the normal PrP(113–120) AGAAAAGA palindrome is an inhibitor/blocker of prion diseases (Mol Cell Neurosci 15:66–78), and the highly conserved Glycine-xxx-Glycine motif PrP(119–131) can inhibit the formation of infectious prion proteins in cells (J Biol Chem 285:20213–20223). This chapter presents the studies of the 3D structures and structural dynamics of PrP(109–136).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alonso DO, DeArmond SJ, Cohen FE, Daggett V (2001) Mapping the early steps in the pH-induced conformational conversion of the prion protein. Proc Natl Acad Sci U S A 98(6):2985–2989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Apostol MI, Sawaya MR, Cascio D, Eisenberg D (2010) Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. J Biol Chem 285(39):29671–29675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Baral PK, Swayampakula M, Rout MK, Kav NN, Spyracopoulos L, Aguzzi A, James MN (2014) Structural basis of prion inhibition by phenothiazine compounds. Structure 22(2):291–303

    Article  CAS  PubMed  Google Scholar 

  4. Barducci A, Chelli R, Procacci P, Schettino V (2005) Misfolding pathways of the prion protein probed by molecular dynamics simulations. Biophys J 88(2):1334–1343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Barducci A, Chelli R, Procacci P, Schettino V, Gervasio FL, Parrinello M (2006) Metadynamics simulation of prion protein: β-structure stability and the early stages of misfolding. J Am Chem Soc 128(8):2705–2710

    Article  CAS  PubMed  Google Scholar 

  6. Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF (2006) Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 31(8):465–472

    Article  CAS  PubMed  Google Scholar 

  7. Barron RM, Thomson V, Jamieson E, Melton DW, Ironside J, Will R, Manson JC (2001) Changing a single amino acid in the N-terminus of murine PrP alters TSE incubation time across three species barriers. EMBO J 20(18):5070–5078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Barron RM, Thomson V, King D, Shaw J, Melton DW, Manson JC (2003) Transmission of murine scrapie to P101L transgenic mice. J Gen Virol 84(Pt 11):3165–3172

    Article  CAS  PubMed  Google Scholar 

  9. Bazan JF, Fletterick RJ, McKinley MP, Prusiner SB (1987) Predicted secondary structure and membrane topology of the scrapie prion protein. Protein Eng 1(2):125–135

    Article  CAS  PubMed  Google Scholar 

  10. Berti F, Gaggelli E, Guerrini R, Janicka A, Kozlowski H, Legowska A, Miecznikowska H, Migliorini C, Pogni R, Remelli M, Rolka K, Valensin D, Valensin G (2007) Structural and dynamic characterization of copper(II) binding of the human prion protein outside the octarepeat region. Chemistry 13(7):1991–2001

    Article  CAS  PubMed  Google Scholar 

  11. Biasini E, Tapella L, Restelli E, Pozzoli M, Massignan T, Chiesa R (2010) The hydrophobic core region governs mutant prion protein aggregation and intracellular retention. Biochem J 430(3):477–486

    Article  CAS  PubMed  Google Scholar 

  12. Biljan I, Ilc G, Giachin G, Raspadori A, Zhukov I, Plavec J, Legname G (2011) Toward the molecular basis of inherited prion diseases: NMR structure of the human prion protein with V210I mutation. J Mol Biol 412(4):660–673

    Article  CAS  PubMed  Google Scholar 

  13. Brown DR (2000) Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci 15(1):66–78

    Article  CAS  PubMed  Google Scholar 

  14. Case DA, Darden TA, Cheatham TE, Simmerling III CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11, University of California, San Francisco

    Google Scholar 

  15. Chen PY, Lin CC, Chang YT, Lin SC, Chan SI (2002) One o-linked sugar can effect the coil-to-β structural transition of the prion peptide. Proc Natl Acad Sci U S A 99(20):12633–12638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chen W, van der Kamp MW, Daggett V (2010) Diverse effects on the native β-sheet of the human prion protein due to disease-associated mutations. Biochem 49(45):9874–9881

    Article  CAS  Google Scholar 

  17. Cheng HM, Tsai TWT, Huang WYC, Lee HK, Lian HY, Chou FC, Mou Y, Chu J, Chan JC (2011) Steric zipper formed by hydrophobic peptide fragment of Syrian hamster prion protein. Biochem 50(32):6815–6823

    Article  CAS  Google Scholar 

  18. Chianini F, Fernández-Borges N, Vidal E, Gibbard L, Pintado B, de Castro J, Priola SA, Hamilton S, Eatona LS, Finlayson J, Pang Y, Steele P, Reid HW, Dagleish MP, Castilla J(2012) Rabbits are not resistant to prion infection. Proc Natl Acad Sci U S A 109(13):5080–5085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Choi JK, Park SJ, Jun YC, Oh JM, Jeong BH, Lee HP, Park SN, Carp RI, Kim YS (2006) Generation of monoclonal antibody recognized by the GxxxG motif (Glycine zipper) of prion protein. Hybridoma (Larchmt) 25(5):271–277

    Article  CAS  Google Scholar 

  20. Chu NK, Shabbir W, Bove-Fenderson E, Araman C, Lemmens-Gruber R, Harris DA, Becker CF (2014) A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes. J Biol Chem 289(43):30144–30160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ciccotosto GD, Cappai R, White AR (2008) Neurotoxicity of prion peptides on cultured cerebellar neurons. In: Hill AF (ed) Prion protein protocols methods. Methods in molecular biology, vol 459. Humana Press, Totowa, pp 83–96 (chapter 6)

    Chapter  Google Scholar 

  22. Coleman BM, Harrison CF, Guo B, Masters CL, Barnham KJ, Lawson VA, Hill AF (2014) Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease sensitive prion species with increased lethality. J Virol 88(5):2690–2703

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Cui T, Daniels M, Wong BS, Li R, Sy MS, Sassoon J, Brown DR (2003) Mapping the functional domain of the prion protein. Eur J Biochem 270(16):3368–3376

    Article  CAS  PubMed  Google Scholar 

  24. Daidone I, Nola AD, Smith JC (2011) Molecular origin of Gerstmann-Straussler-Scheinker syndrome: insight from computer simulation of an amyloidogenic prion peptide. Biophys J 100(12):3000–3007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Daskalov A, Gantner M, Wälti MA, Schmidlin T, Chi CN, Wasmer C, Schütz A, Ceschin J, Clavé C, Cescau S, Meier B, Riek R, Saupe SJ (2014) Contribution of specific residues of the β-solenoid fold to HET-s prion function, amyloid structure and stability. PLoS Pathog 10(6):e1004158

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Daude N, Ng V, Watts JC, Genovesi S, Glaves JP, Wohlgemuth S, Schmitt-Ulms G, Young H, McLaurin J, Fraser PE, Westaway D (2010) Wild-type Shadoo proteins convert to amyloid-like forms under native conditions. J Neurochem 113(1):92–104

    Article  CAS  PubMed  Google Scholar 

  27. De Fea KA, Nakahara DH, Calayag MC, Yost CS, Mirels LF, Prusiner SB, Lingappa VR (1994) Determinants of carboxyl-terminal domain translocation during prion protein biogenesis. J Biol Chem 269(24):16810–16820

    PubMed  Google Scholar 

  28. De Marco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci U S A 101(8):2293–2298

    Article  CAS  Google Scholar 

  29. De Simone A, Dodson GG, Verma CS, Zagari A, Fraternali F (2005) Prion and water; tight and dynamical hydration sites have a key role in structural stability. Proc Natl Acad Sci U S A 102(21):7535–7540

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Dragani B, Cocco R, Principe DR, Paludi D, Aceto A (2001) Conformational properties of five peptides corresponding to the entire sequence of glutathione transferase domain II. Arch Biochem Biophys 389(1):15–21

    Article  CAS  PubMed  Google Scholar 

  31. Fei L, Perrett S (2009) Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch. J Biol Chem 284(17):11134–11141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fernandez-Borges N, Chianini F, Erana H, Vidal E, Eaton SL, Pintado B, Finlayson J, Dagleish MP, Castilla J (2012) Naturally prion resistant mammals: a utopia? Prion 6(5):425–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gaggelli E, Bernardi F, Molteni E, Pogni R, Valensin D, Valensin G, Remelli M, Luczkowski M, Kozlowski H (2005) Interaction of the human prion PrP (106–126) sequence with copper(II), manganese(II), and zinc(II): NMR and EPR studies. J Am Chem Soc 127(3):996–1006

    Article  CAS  PubMed  Google Scholar 

  34. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120(1):97–120

    Article  CAS  PubMed  Google Scholar 

  35. Glockshuber R, Hornemann S, Billeter M, Riek R, Wider G, Wuthrich K (1998) Prion protein structural features indicate possible relations to signal peptidases. FEBS Lett 426(3):291–296

    Article  CAS  PubMed  Google Scholar 

  36. Govaerts C, Wille H, Prusiner SB, Cohen EE (2004) Evidence for assembly of prions with left-handed β-helices into trimers. Proc Natl Acad Sci U S A 101(22):8342–8347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Haire LF, Whyte SM, Vasisht N, Gill AC, Verma C, Dodson EJ, Dodson GG, Bayley PM (2004) The crystal structure of the globular domain of sheep prion protein. J Mol Biol 336(5):1175–1183

    Article  CAS  PubMed  Google Scholar 

  38. Harris DA, Huber MT, van Dijken P, Shyng SL, Chait BT, Wang R (1993) Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32(4):1009–1016

    Article  CAS  PubMed  Google Scholar 

  39. Harrison CF, Barnham KJ, Hill AF (2007) Neurotoxic species in prion disease: a role for PrP isoforms? J Neurochem 103(5):1709–1720

    Article  CAS  PubMed  Google Scholar 

  40. Harrison CF, Lawson VA, Coleman BM, Kim YS, Masters CL, Cappai R, Barnham KJ, Hill AF (2010) Conservation of a glycine-rich region in the prion protein is required for uptake of prion infectivity. J Biol Chem 285(26):20213–20223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hasnain SS, Murphy LM, Strange RW, Grossmann JG, Clarke AR, Jackson GS, Collinge J (2001) XAFS study of the high-affinity copper-binding site of HuPrP(91–231) and its low-resolution structure in solution. J Mol Biol 311(3):467–473

    Article  CAS  PubMed  Google Scholar 

  42. Holscher C, Bach UC, Dobberstein B (2001) Prion protein contains a second endoplasmic reticulum targeting signal sequence located at its C terminus. J Biol Chem 276(16):13388–13394

    Article  CAS  PubMed  Google Scholar 

  43. Holscher C, Delius H, Burkle A (1998) Overexpression of nonconvertible PrPC delta114–121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrPSc accumulation. J Virol 72(2):1153–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Huang D, Caflisch A (2015) Evolutionary conserved Tyr169 stabilizes the β2-α2 loop of prion protein. J Am Chem Soc 137(8):2948–2957

    Article  CAS  PubMed  Google Scholar 

  45. Ilc G, Giachin G, Jaremko M, Jaremko L, Benetti F, Plavec J, Zhukov I, Legname G (2010) NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. PLoS ONE 5(7):e11715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Inouye H, Kirschner DA (1996) Refined fibril structures: the hydrophobic core in Alzheimer’s amyloid β-protein and prion as revealed by X-ray diffraction. Ciba Found Symp 199:22–35, (chapter 3); discussion 35–39

    CAS  PubMed  Google Scholar 

  47. James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A 94(19):10086–10091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Jeong BH, Jin HT, Choi EK, Carp RI, Kim YS (2012) Lack of association between 14-3-3 β gene (YWHAB) polymorphisms and sporadic Creutzfeldt-Jakob disease (CJD). Mol Biol Rep 39(12):10647–10653

    Google Scholar 

  49. Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH (2005) Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J Mol Biol 346(5):1393–1407

    Article  CAS  PubMed  Google Scholar 

  50. Joszai V, Turi I, Kallay C, Pappalardo G, Di Natale G, Rizzarelli E, Sovago I (2012) Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein. J Inorg Biochem 112:17–24. doi:10.1016/j.jinorgbio.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  51. Julien O, Chatterjee S, Bjorndahl TC, Sweeting B, Acharya S, Semenchenko V, Chakrabartty A, Pai EF, Wishart DS, Sykes BD, Cashman NR (2011) Relative and regional stabilities of the hamster, mouse, rabbit, and bovine prion proteins toward urea unfolding assessed by nuclear magnetic resonance and circular dichroism spectroscopies. Biochemistry 50(35):7536–7545

    Article  CAS  PubMed  Google Scholar 

  52. Julien O, Chatterjee S, Thiessen A, Graether SP, Sykes BD (2009) Differential stability of the bovine prion protein upon urea unfolding. Protein Sci 18(10):2172–2182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  54. Kanyo ZF, Pan KM, Williamson RA, Burton DR, Prusiner SB, Fletterick RJ, Cohen FE (1999) Antibody binding defines a structure for an epitope that participates in the PrPC to PrPSc conformational change. J Mol Biol 293(4):855–863

    Article  CAS  PubMed  Google Scholar 

  55. Khan MQ, Sweeting B, Mulligan VK, Arslan PE, Cashman NR, Pai EF, Chakrabartty A (2010) Prion disease susceptibility is affected by β-structure folding propensity and local side-chain interactions in PrP. Proc Natl Acad Sci U S A 107(46):19808–19813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Klemm HM, Welton JM, Masters CL, Klug GM, Boyd A, Hill AF, Collins SJ, Lawson VA (2012) The prion protein preference of sporadic Creutzfeldt-Jakob disease subtypes. J Biol Chem 287(43):36465–36472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Klewpatinond M, Viles JH (2007) Fragment length influences affinity for Cu2+ and Ni2+ binding to His96 or His111 of the prion protein and spectroscopic evidence for a multiple histidine binding only at low pH. Biochem J 404(3):393–402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8(9):770–774

    Article  CAS  PubMed  Google Scholar 

  59. Knolmurodov K, Hirano Y, Ebisuzaki T (2003) MD simulations on the influence of disease-related amino acid mutations in the human prion protein. Chem-Bio Inf J 3(2):86–95

    Google Scholar 

  60. Kourie JI, Kenna BL, Tew D, Jobling MF, Curtain CC, Masters CL, Barnham KJ, Cappai R (2003) Copper modulation of ion channels of PrP[106–126] mutant prion peptide fragments. J Membr Biol 193(1):35–45

    Article  CAS  PubMed  Google Scholar 

  61. Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H (2003) NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proc Natl Acad Sci U S A 100(25):14790–14795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kuznetsov IB, Rackovsky S (2004) Comparative computational analysis of prion proteins reveals two fragments with unusual structural properties and a pattern of increase in hydrophobicity associated with disease-promoting mutations. Protein Sci 13(12):3230–3244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lange A, Gattin Z, Van Melckebeke H, Wasmer C, Soragni A, van Gunsteren WF, Meier BH (2009) A combined solid-state NMR and MD characterization of the stability and dynamics of the HET-s(218–289) prion in its amyloid conformation. Chembiochem 10(10):1657–1665

    Article  CAS  PubMed  Google Scholar 

  64. Lau A, Mays CE, Genovesi S, Westaway D (2012) RGG repeats of PrP-like Shadoo protein bind nucleic acids. Biochemistry 51(45):9029–9031

    Article  CAS  PubMed  Google Scholar 

  65. Laws DD, Bitter HM, Liu K, Ball HL, Kaneko K, Wille H, Cohen FE, Prusiner SB, Pines A, Wemmer DE (2001) Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc Natl Acad Sci U S A 98(20):11686–11690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lee SW, Mou Y, Lin SY, Chou FC, Tseng WH, Chen C, Lu CYD, Yu SSF, Chan JCC (2008) Steric zipper of the amyloid fibrils formed by residues 109 to 122 of the Syrian hamster prion protein. J Mol Biol 378(5):1142–1154

    Article  CAS  PubMed  Google Scholar 

  67. Lee DC, Sakudo A, Kim CK, Nishimura T, Saeki K, Matsumoto Y, Yokoyama T, Chen SG, Itohara S, Onodera T (2006) Fusion of Doppel to octapeptide repeat and N-terminal half of hydrophobic region of prion protein confers resistance to serum deprivation. Microbiol Immunol 50(3):203–209

    Article  CAS  PubMed  Google Scholar 

  68. Li J, Mei FH, Xiao GF, Guo CY, Lin DH (2007) 1H, 13C and 15N resonance assignments of rabbit prion protein 91–228. J Biomol NMR 38(2):181

    Article  CAS  PubMed  Google Scholar 

  69. Liang J, Kong Q (2012) α-Cleavage of cellular prion protein. Prion 6(5):453–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Liao YC, Tokes Z, Lim E, Lackey A, Woo CH, Button JD, Clawson GA (1987) Cloning of rat “prion-related protein” cDNA. Lab Invest 57(4):370–374

    CAS  PubMed  Google Scholar 

  71. Lin DH, Wen Y (2011) Progresses on prion proteins. Scientia Sinica Chimica 41(4):683–698 (in Chinese)

    Article  Google Scholar 

  72. Liu H, Farr-Jones S, Ulyanov NB, Llinas M, Marqusee S, Groth D, Cohen FE, Prusiner SB, James TL (1999) Solution structure of Syrian hamster prion protein rPrP(90–231). Biochemistry 38(17):5362–5377

    Article  CAS  PubMed  Google Scholar 

  73. Lutz J, Brabeck C, Niemann HH, Kloz U, Korth C, Lingappa VR, Bürkle A (2010) Microdeletions within the hydrophobic core region of cellular prion protein alter its topology and metabolism. Biochem Biophys Res Commun 393(3):439–444

    Article  CAS  PubMed  Google Scholar 

  74. Ma BY, Nussinov R (2002) Molecular dynamics simulations of alanine rich β-sheet oligomers: insight into amyloid formation. Protein Sci 11(10):2335–2350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys 41(3–4):265–297

    Article  CAS  PubMed  Google Scholar 

  76. Mastrianni JA, Curtis MT, Oberholtzer JC, Da Costa MM, DeArmond S, Prusiner SB, Garbern JY (1995) Prion disease (PrP-A117V) presenting with ataxia instead of dementia. Neurology 45(11):2042–2050

    Article  CAS  PubMed  Google Scholar 

  77. Mays CE, Coomaraswamy J, Watts JC, Yang J, Ko KW, Strome B, Mercer RC, Wohlgemuth SL, Schmitt-Ulms G, Westaway D (2014) Endoproteolytic processing of the mammalian prion glycoprotein family. FEBS J 281(3):862–876

    Article  CAS  PubMed  Google Scholar 

  78. Moore RA, Vorberg I, Priola SA (2005) Species barriers in prion diseases – brief review. Arch Virol Suppl 19:187–202

    PubMed  Google Scholar 

  79. Muramoto T, Kitamoto T, Tateishi J, Goto I (1992) Successful transmission of Creutzfeldt-Jakob disease from human to mouse verified by prion protein accumulation in mouse brains. Brain Res 599(2):309–316

    Article  CAS  PubMed  Google Scholar 

  80. Ning L, Wang Q, Zheng Y, Liu H, Yao X (2015) Effects of the A117V mutation on the folding and aggregation of palindromic sequences (PrP113–120) in prion: insights from replica exchange molecular dynamics simulations. Mol Biosyst 11(2):647–655

    Article  CAS  PubMed  Google Scholar 

  81. Nisbet RM, Harrison CF, Lawson VA, Masters CL, Cappai R, Hill AF (2010) Residues surrounding the glycosylphosphatidylinositol anchor attachment site of PrP modulate prion infection: insight from the resistance of rabbits to prion disease. J Virol 84(13):6678–6686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Oliveira-Martins JB, Yusa S, Calella AM, Bridel C, Baumann F, Dametto P, Aguzzi A (2010) Unexpected tolerance of α-cleavage of the prion protein to sequence variations. PLoS ONE 5(2):e9107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Ott CM, Akhavan A, Lingappa VR (2007) Specific features of the prion protein transmembrane domain regulate nascent chain orientation. J Biol Chem 282(15):11163–11171

    Article  CAS  PubMed  Google Scholar 

  84. Ott CM, Lingappa VR (2004) Signal sequences influence membrane integration of the prion protein. Biochemistry 43(38):11973–11982

    Article  CAS  PubMed  Google Scholar 

  85. Owen JP, Maddison BC, Whitelam GC, Gough KC (2007) Use of thermolysin in the diagnosis of prion diseases. Mol Biotechnol 35(2):161–170

    Article  CAS  PubMed  Google Scholar 

  86. Patel A, Vasiljevic S, Jones IM (2013) Unique structural properties associated with mouse prion triangle 105–125 protein. Prion 7(3):235–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR, Rudd PM, Dwek RA, Burton DR, Prusiner SB (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412(6848):739–743

    Article  CAS  PubMed  Google Scholar 

  88. Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, Bastidas RB, Rozenshteyn R, James TL, Houghten RA, Cohen FE, Prusiner SB, Burton DR (1997) A conformational transition at the N-terminus of the prion protein features in formation of the scrape isoform. J Mol Biol 273(3):614–622

    Article  CAS  PubMed  Google Scholar 

  89. Pimenta J, Viegas A, Sardinha J, Martins IC, Cabrita EJ, Fontes CM, Prates JA, Pereira RM (2013) NMR solution structure and SRP54M predicted interaction of the N-terminal sequence (1–30) of the ovine Doppel protein. Peptides 49C:32–40. doi:10.1016/j.peptides.2013.08.013

    Article  CAS  Google Scholar 

  90. Polymenidoua M, Trusheimb H, Stallmacha L, Moosa R, Julius JA, Mielea G, Lenzbauerb C, Aguzzia A (2008) Canine MDCK cell lines are refractory to infection with human and mouse prions. Vaccine 26(21):2601–2614

    Article  CAS  Google Scholar 

  91. Premzl M, Sangiorgio L, Strumbo B, Marshall Graves JA, Simonic T, Gready JE (2003) Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 314:89–102

    Article  CAS  PubMed  Google Scholar 

  92. Priola SA, Chesebro B (1995) A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J Virol 69(12):7754–7758

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Ragg E, Tagliavini F, Malesani P, Monticelli L, Bugiani O, Forloni G, Salmona M (1999) Determination of solution conformations of PrP106–126, a neurotoxic fragment of prion protein, by 1H NMR and restrained molecular dynamics. Eur J Biochem 266(3):1192–1201

    Article  CAS  PubMed  Google Scholar 

  94. Rivillas-Acevedo L, Grande-Aztatzi R, Lomeli I, Garcia JE, Barrios E, Teloxa S, Vela A, Quintanar L (2011) Spectroscopic and electronic structure studies of copper(II) binding to His111 in the human prion protein fragment 106–115: evaluating the role of protons and Methionine residues. Inorg Chem 50(5):1956–1972

    Article  CAS  PubMed  Google Scholar 

  95. Saez-Cirion A, Nieva JL, Gallaher WR (2003) The hydrophobic internal region of bovine prion protein shares structural and functional properties with HIV type 1 fusion peptide. AIDS Res Hum Retroviruses 19(11):969–978

    Article  CAS  PubMed  Google Scholar 

  96. Sakudo A, Lee DC, Li S, Nakamura T, Matsumoto Y, Saeki K, Itohara S, Ikuta K, Onodera T (2005) PrP cooperates with STI1 to regulate SOD activity in PrP-deficient neuronal cell line. Biochem Biophys Res Commun 328(1):14–19

    Article  CAS  PubMed  Google Scholar 

  97. Sakudo A, Lee DC, Nishimura T, Li S, Tsuji S, Nakamura T, Matsumoto Y, Saeki K, Itohara S, Ikuta K, Onodera T (2005) Octapeptide repeat region and N-terminal half of hydrophobic region of prion protein (PrP) mediate PrP-dependent activation of superoxide dismutase. Biochem Biophys Res Commun 326(3):600–606

    Article  CAS  PubMed  Google Scholar 

  98. Sakudo A, Nakamura I, Lee DC, Saeki K, Ikuta K, Onodera T (2007) Neurotoxic prion protein (PrP) fragment 106–126 requires the N-terminal half of the hydrophobic region of PrP in the PrP-deficient neuronal cell line. Protein Pept Lett 14(1):1–6

    CAS  PubMed  Google Scholar 

  99. Saupe SJ (2011) The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin Cell Dev Biol 22(5):460–468

    Article  CAS  PubMed  Google Scholar 

  100. Sauve S, Buijs D, Gingras G, Aubin Y (2012) Interactions between the conserved hydrophobic region of the prion protein and dodecylphosphocholine micelles. J Biol Chem 287(3):1915–1922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  CAS  PubMed  Google Scholar 

  102. Seabury CM, Derr JN (2003) Identification of a novel ovine PrP polymorphism and scrapie-resistant genotypes for St. Croix White and a related composite breed. Cytogenet Genome Res 102(1–4):85–88

    Article  CAS  PubMed  Google Scholar 

  103. Shi Q, Dong XP (2011) (Ctm)PrP and ER stress: a neurotoxic mechanism of some special PrP mutants. Prion 5(3):123–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Smith CJ, Drake AF, Banfield BA, Bloomberg GB, Palmer MS, Clarke AR, Collinge J (1997) Conformational properties of the prion octa-repeat and hydrophobic sequences. FEBS Lett 405(3):378–384

    Article  CAS  PubMed  Google Scholar 

  105. Stewart P, Shen C, Zhao D, Goldmann W (2009) Genetic analysis of the SPRN gene in ruminants reveals polymorphisms in the alanine-rich segment of shadoo protein. J Gen Virol 90(Pt 10):2575–2580

    Article  CAS  PubMed  Google Scholar 

  106. Supattapone S, Muramoto T, Legname G, Mehlhorn I, Cohen FE, DeArmond SJ, Prusiner SB, Scott MR (2001) Identification of two prion protein regions that modify scrapie incubation time. J Virol 75(3):1408–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Suzuki T, Kurokawa T, Hashimoto H, Sugiyama M (2002) cDNA sequence and tissue expression of Fugu rubripes prion protein-like: a candidate for the teleost orthologue of tetrapod PrPs. Biochem Biophys Res Commun 294(4):912–917

    Article  CAS  PubMed  Google Scholar 

  108. Tcherkasskaya O, Sanders W, Chynwat V, Davidson EA, Orser CS (2003) The role of hydrophobic interactions in amyloidogenesis: example of prion-related polypeptides. J Biomol Struct Dyn 21(3):353–365

    Article  CAS  PubMed  Google Scholar 

  109. Tseng CY, Yu CP, Lee HC (2009) Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank. Eur Biophys J 38(5):601–611

    Article  CAS  PubMed  Google Scholar 

  110. Turi I, Kallay C, Szikszai D, Pappalardo G, Di Natale G, De Bona P, Rizzarelli E, Sovago I (2010) Nickel(II) complexes of the multihistidine peptide fragments of human prion protein. J Inorg Biochem 104(8):885–891

    Article  CAS  PubMed  Google Scholar 

  111. Valensin D, Gajda K, Gralka E, Valensin G, Kamysz W, Kozlowski H (2010) Copper binding to chicken and human prion protein amylodogenic regions: differences and similarities revealed by Ni2+ as a diamagnetic probe. J Inorg Biochem 104(1):71–78

    Article  CAS  PubMed  Google Scholar 

  112. Vilches S, Vergara C, Nicolas O, Sanclimens G, Merino S, Varon S, Acosta GA, Albericio F, Royo M, Del Rio JA, Gavin R (2013) Neurotoxicity of prion peptides mimicking the central domain of the cellular prion protein. PLoS ONE 8(8):e70881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Viles JH, Donne D, Kroon G, Prusiner SB, Cohen FE, Dyson HJ, Wright PE (2001) Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry 40(9):2743–2753

    Article  CAS  PubMed  Google Scholar 

  114. Vorberg I, Martin HG, Eberhard P, Suzette AP (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J Virol 77(3):2003–2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Wadsworth JD, Asante EA, Desbruslais M, Linehan JM, Joiner S, Gowland I, Welch J, Stone L, Lloyd SE, Hill AF, Brandner S, Collinge J (2004) Human prion protein with valine 129 prevents expression of variant CJD phenotype. Science 306(5702):1793–1796

    Article  CAS  PubMed  Google Scholar 

  116. Wang X, He L, Zhao C, Du W, Lin J (2013) Gold complexes inhibit the aggregation of prion neuropeptides. J Biol Inorg Chem 18(7):767–778

    Article  CAS  PubMed  Google Scholar 

  117. Wang F, Yin S, Wang X, Zha L, Sy MS, Ma J (2010) Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction. Biochemistry 49(37):8169–8176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Wegner C, Romer A, Schmalzbauer R, Lorenz H, Windl O, Kretzschmar HA (2002) Mutant prion protein acquires resistance to protease in mouse neuroblastoma cells. J Gen Virol 83(Pt 5):1237–1245

    Article  CAS  PubMed  Google Scholar 

  119. Wen Y, Li J, Xiong MQ, Peng Y, Yao WM, Hong J, Lin DH (2010) Solution structure and dynamics of the I214V mutant of the rabbit prion protein. PLoS ONE 5(10):e13273

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Wen Y, Li J, Yao WM, Xiong MQ, Hong J, Peng Y, Xiao GF, Lin DH (2010) Unique structural characteristics of the rabbit prion protein. J Biol Chem 285(41):31682–31693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang QX (2014) Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 3:e01489

    Article  PubMed Central  PubMed  Google Scholar 

  122. Yuan FF, Biffin S, Brazier MW, Suzrez M, Cappai R, Hill AF, Collins SJ, Sullivan JS, Middleton D, Multhaup G, Geczy AF, Masters CL (2005) Detection of prion epitopes on PrPC and PrPSc of transmissible spongiform encephalopathies using specific monoclonal antibodies to PrP. Immunol Cell Biol 83(6):632–637

    Article  CAS  PubMed  Google Scholar 

  123. Zhang ZQ, Chen H, Lai LH (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinf 23(17):2218–2225

    Article  CAS  Google Scholar 

  124. Zhang X, Zhou X, Ding T, Gan W, Yang L, Yin X, Zhao D (2012) Polymorphisms of SPRN (shadow of prion protein homology) in three breeds of sheep in China. Virus Genes 44(3):548–550

    Article  CAS  PubMed  Google Scholar 

  125. Zhao H, Liu LL, Du SH, Wang SQ, Zhang YP (2012) Comparative analysis of the Shadoo gene between cattle and buffalo reveals significant differences. PLoS ONE 7(10):e46601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Zweckstetter M (2013) Conserved amyloid core structure of stop mutants of the human prion protein. Prion 7(3):193–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J. (2015). The Hydrophobic Region PrP(109–136). In: Molecular Structures and Structural Dynamics of Prion Proteins and Prions. Focus on Structural Biology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7318-8_10

Download citation

Publish with us

Policies and ethics