Skip to main content

Test Methods for Concrete Durability Indicators

  • Chapter
  • First Online:
Performance-Based Specifications and Control of Concrete Durability

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 18))

Abstract

Durability of concrete structures is primarily dependent on the environmental influences, i.e. the penetration of aggressive substances in the structural element from the environment. Penetrability is an important durability indicator of concrete and by specifying different classes of penetrability of concrete it should be possible to design a structure with the required resistance to environmental loads. This chapter covers descriptions of the available and commonly applied in situ and laboratory, non-invasive and semi-invasive test methods for evaluating concrete penetrability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. RILEM report 40. Non-destructive evaluation of the penetrability and thickness of the concrete cover. In: Torrent R, Fernández Luco L, editors. State of the art report (STAR): RILEM TC 189-NEC. RILEM Publication S.A.R.L.; 2007. 246 pp.

    Google Scholar 

  2. Lawrence CD. Transport of oxygen through concrete. In: Chemistry and chemically-related properties of cement. London: British Ceramic Society; 1984.

    Google Scholar 

  3. RILEM report 12. Performance criteria for concrete durability. In: Kropp J, Hilsdorf HK, editors. London: E&FN SPON; 1995. 327 pp.

    Google Scholar 

  4. Parrott L. Design for avoiding damage due to carbonation-induced corrosion. In: Durability of concrete: third international conference. France: Nice; 1994. pp 283–298.

    Google Scholar 

  5. Neville AM. Properties of concrete. 4th ed. Essex: Longman Group Limited; 1995.

    Google Scholar 

  6. Basheer PAM. Near-surface testing for strength and durability of concrete. In: Fifth CANMET/ACI international conference on durability of concrete, Barcelona, Spain; 2000.

    Google Scholar 

  7. Schönlin K, Hilsdorf H. Evaluation of the effectiveness of curing of concrete structures. In: Scanlon JM, editors. Concrete durability: Katharine and Bryant Mather international conference, SP-100. ACI; 1987. pp 207–226.

    Google Scholar 

  8. Torrent RJ. A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater Struct. 1992;25(150):358–65.

    Article  Google Scholar 

  9. Figg JW. Methods of measuring air and water permeability of concrete. Mag Concr Res. 1973; 25(85):213–219 (London).

    Google Scholar 

  10. Kasai Y, Matsui I, Nagao M. On site rapid air permeability test for concrete, ACI SP-82, pp 501–524. In: Malhotra VM, editors. In-situ/non-destructive testing of concrete, ACI, Detroit; 1984.

    Google Scholar 

  11. Imamoto K, Shimozawa K, Nagayama M, Yamasaki J, Nimura S. Air permeability of concrete cover and its relationship with carbonation progress under long-term exposure test in Japan. In: Alexander MG, Bertron A, editors. Concrete in aggressive aqueous environments—performance, testing, and modeling; 2009.

    Google Scholar 

  12. Berissi R, Bonnet G, Grimaldi G. Mesure de la porosite ouverte des betons hydrauliques. Bull Liaison Labor Ponts Chauss. 1986;142:59–67 (in French).

    Google Scholar 

  13. Gabrijel I, Mikulić D, Bjegović D, Stipanović Oslaković I. In-situ testing of the permeability of concrete, SACoMaTiS 2008, Varenna, Italy, 2008.

    Google Scholar 

  14. Bjegović D, Serdar M, Kožoman E. The influence of controlled permeability formwork on the mechanical and durability properties of concrete cover. eGFOS Electron J Fac Civ Eng Osijek. 2012; 1, 2:62–73.

    Google Scholar 

  15. SIA 262/1:2013. Concrete structures—complimentary specifications, Swiss Standards; 2013.

    Google Scholar 

  16. Jacobs F, Denarie E, Leemann A, Teruzzi T. Recommendations for the quality control of concrete with air permeability measurements, VSS Report 641, Bern, Switzerland; 2009.

    Google Scholar 

  17. Bjegović D, Serdar M, Baričević A, Šimunović T. Air permeability as a parameter of concrete quality compliance. In: Knežević M, Šćepanović B, editors. Civil engineering—research and practice. Podgorica: Štamparija Pavlović; 2012; pp 1263–1269.

    Google Scholar 

  18. Paulini P. A laboratory and on-site test method for air permeability of concrete. In: 2nd international symposium on service life design for infrastructure, Delft, The Netherlands; 2010.

    Google Scholar 

  19. Paulini P, Nasution F. Air permeability of near-surface concrete. In: Concrete under severe conditions environment & loading, CONSEC’07 Tours, France; 2007.

    Google Scholar 

  20. Kollek J. CEMBUREAU recommendation—the determination of the permeability of concrete to oxygen by the Cembureau method. Mater Struct. 1989;22:225–30.

    Article  Google Scholar 

  21. RILEM TC 116-PCD. Permeability of concrete as a criterion of its durability recommendations tests for gas permeability of concrete. Mater Struct. 1999; 32:174–179.

    Google Scholar 

  22. Abbas A, Carcassés M, Ollivier J-P. Gas permeability of concrete in relation to its degree of saturation. Mater Struct. 1999;32:3–8.

    Article  Google Scholar 

  23. Alexander MG, Mackechnie JR, Ballim Y. Use of durability indexes to achieve durable cover concrete in reinforced concrete structures. In: Skalny JP, Mindess S, editors. Materials science of concrete, American Ceramic Society; 2001. vol. VI, pp 483–511.

    Google Scholar 

  24. Mackechnie JR, Alexander MG. Durability predictions using early age durability index testing. In: Proceedings of 9th durability and building materials conference, 2002, Australian Corrosion Association, Brisbane; 2002. 11 pp.

    Google Scholar 

  25. Beushausen H, Alexander MG, Mackechnie J. Concrete durability aspects in an international context. In: Concrete plant and precast technology BFT, Germany; 2003. vol 7, pp. 22–32.

    Google Scholar 

  26. Bjegović D, Serdar M, Stipanović Oslaković I. Assessment of concrete properties in structures. In: Kim S-H, Ann KY, editors. Handbook of concrete durability. Korea: Middleton Publishing Inc.; 2010. pp. 131–179.

    Google Scholar 

  27. Basheer PAM. A brief review of methods for measuring the permeation properties of concrete in-situ. Proceeding of ICE structures & bridges. 1993;99:74–83.

    Article  Google Scholar 

  28. Gomes AM, Costa JO, Albertini H, Aguiar JE. Permeability of concrete: a study intended for the “in-situ” valuation using portable instruments and traditional techniques. In: International symposium (NDT-CE 2003) non-destructive testing in civil engineering, 2003. http://www.ndt.net/article/ndtce03/papers/v017/v017.htm.

  29. Jacobs F, Lemann A. Concrete properties according to SN EN 206-1, VSS report 615, 2007 (in German).

    Google Scholar 

  30. Jacobs F. Permeability and porous structure of cementitious materials. In: Building materials report no. 7. Aedificatio Publishers, IRB Verlag, 1994. 164 pp (in German).

    Google Scholar 

  31. EN 12390-8. Testing hardened concrete—Part 8: depth of penetration of water under pressure, 2000.

    Google Scholar 

  32. Basheer L, Kropp J, Cleland DJ. Assessment of the durability of concrete from its permeation properties: a review. Constr Build Mater. 2001;15:93–103.

    Article  Google Scholar 

  33. Long AE, Henderson GD, Montgomery FR. Why assess the properties of near-surface concrete? Constr Build Mater. 2001; 1565–1579.

    Google Scholar 

  34. Glanville WH. The permeability of portland cement concrete. In: Building research establishment, Technical paper, No. 3; 1931. 62 pp.

    Google Scholar 

  35. British Standard Institution. Methods for testing hardened concrete for other than strength, BS1881, Part 208; 1996.

    Google Scholar 

  36. RILEM CPC11.2, Absorption of water by capillarity. 2nd ed.; 1982.

    Google Scholar 

  37. Laurent J. Capillary water transfer in stone materials: theoretical and experimental aspects, Advanced study course, Paris, pp 7–18. In: Lefèvre RA, editor. European Commission; 1998. pp 19–39.

    Google Scholar 

  38. Hall C. Water sorptivity of mortars and concretes, a review. Mag Concr Res. 1989;41(147):51–61.

    Article  Google Scholar 

  39. EN 13057:2003. Products and systems for the protection and repair of concrete structures—test methods—determination of resistance of capillary absorption; 2003.

    Google Scholar 

  40. Andrade C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem Concr Res. 1993;23(3):724–42.

    Article  Google Scholar 

  41. Bertolini L, Elsener B, Pedeferri P, Polder RP. Corrosion of steel in concrete. Wiley-VCH; 2004.

    Google Scholar 

  42. Kropp J, Alexander M. Transport mechanisms and reference tests. In: RILEM TC 189-NEC state-of-the-art report; 2007. pp 13–34.

    Google Scholar 

  43. CHLORTEST. Resistance of concrete to chloride ingress—from laboratory tests to in-field performance, EU-Project (5th FP GROWTH) G6RD-CT-2002-00855, Workpackage 5 Report: “Final evaluation of test methods”, 2005.

    Google Scholar 

  44. NT BUILD 443. Concrete, hardened: accelerated chloride penetration, Nordtest method, 1995.

    Google Scholar 

  45. NT BUILD 492. Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments, Nordtest method, 1999.

    Google Scholar 

  46. Stipanović I, Bjegović D, Serdar M. Resistance of green concrete to chloride ingress. In: Ferreira RM, Gulikers J, Andrade C, editors. Integral service life modelling of concrete structures. Bagneux: RILEM Publications S.A.R.L.; 2007. pp 141–148.

    Google Scholar 

  47. Vivas E, Boyd A, Hamilton HR. Permeability of concrete—comparison of conductivity and diffusion methods, FDOT UF Project no. 00026899, Final report. http://www.dot.state.fl.us/research-center/Completed_Proj/Summary_SMO/FDOT_BD536_rpt.pdf, 2007.

  48. EU—Brite EuRam III, DuraCrete final technical report, Probabilistic performance based durability design of concrete structures, Document BE95-1347/R17, 2000.

    Google Scholar 

  49. Beushausen H, Alexander MG. The South African durability index tests in an international comparison. J S Afr Inst Civ Eng. 2008;50(1):25–31.

    Google Scholar 

  50. CEN/TR15868:2009. Survey of national requirements used in conjunction with EN 206-1:2000, 2009.

    Google Scholar 

  51. Jacobs F, Lemann A. Concrete properties according to SN EN 206-1 (in german), VSS report 615, 2007.

    Google Scholar 

  52. Bundesanstalt für Wasserbau, Merkblatt Chlorideindringwiderstan, 2004 (in German).

    Google Scholar 

  53. Cement & Concrete Association of New Zealand, Specifying concrete for performance. http://www.ccanz.org.nz/. 2014.

  54. Perić V, Serdar M, Bjegović D. Prescribing chloride diffusion coefficient as a durability indicator in the performance-based design procedure. Zagreb: Faculty of Civil Engineering University of Zagreb; 2012. p. 139.

    Google Scholar 

  55. ASTM C1202-10. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, 2010.

    Google Scholar 

  56. Obla KH, Lobo CL. Acceptance criteria for durability tests: minimizing the risks of accepting defective concrete or rejecting acceptable concrete. Concr Int. 2007;5:43–8.

    Google Scholar 

  57. Stipanović Oslaković I, Bjegović D, Rosković R, Serdar M. Resistance of blended cement concrete to chloride ingress. Concr Plant Int. 2010; 3:102–107.

    Google Scholar 

  58. Saito M, Ishimori H. Chloride permeability of concrete under static and repeated compressive loading. Cem Concr Res. 1995;25(4):803–8.

    Article  Google Scholar 

  59. Goodspeed CH, Vanikar S, Cook RA. High performance concrete defined for highway structures. ACI Concr Int. 1996;18(2):62–7.

    Google Scholar 

  60. Thomas MDA, Jones MR. A critical review of service life modelling of concretes exposed to chlorides. In: Dhir RK, Hewlett PC, editors. Concrete in the service of mankind: radical concrete technology. London: E.&F.N. Spon; 1996. pp 723–736.

    Google Scholar 

  61. Samaha HR, Hover KC. Influence of microcracking on the mass transport properties of concrete. ACI Mater J. 1992;89(4):416–24.

    Google Scholar 

  62. Zhang MH, Gjorv OE. Permeability of high strength lightweight concrete. ACI Mater J. 1991;88(5):463–9.

    Google Scholar 

  63. Malek RIA, Roy DM. The Permeability of chloride ions in fly ash-cement pastes, mortars, and concrete, MRS symposium, vol 113, Materials Research Society, Pittsburgh; 1996. pp 291–300.

    Google Scholar 

  64. Roy DM. Hydration, microstructure and chloride diffusion of chloride ions in hardened cement pastes, ACI SP-114, vol 2, American Concrete Institute, Detroit; 1989. pp 1265–1281.

    Google Scholar 

  65. Geiker M, Thaulow N, Andersen PJ. Assessment of rapid chloride ion permeability test of concrete with and without mineral admixtures. In: Baker JM, Nixon PJ, Majumdar AJ, Davis H, editors. Durability of building materials. London: E&FN Spon; 1990. pp 493–502.

    Google Scholar 

  66. Castellote M, Andrade C, Alonso C. Measurement of the steady and non-steady state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests. Cem Concr Res. 2001;31:1411–20.

    Article  Google Scholar 

  67. UNE 83988-1:2008, Concrete durability—test methods—determination of the electrical resistivity—Part 1: direct test (reference method), 2008.

    Google Scholar 

  68. Andrade C, Polder R, Basheer M. Non-destructive methods to measure ion migration. In: RILEM TC 189-NEC state-of-the-art report; 2007. pp 91–112.

    Google Scholar 

  69. PNE 83992-2 EX., Concrete durability. test methods. Chloride penetration tests on concrete. Part 2: Integral accelerated method, 2012.

    Google Scholar 

  70. Castellote M, Andrade C, Alonso C. Accelerated simultaneous determination of chloride depassivation threshold and of non-stationary diffusion coefficient values. Corros Sci. 2002;44:2409–24.

    Article  Google Scholar 

  71. Andrade C, González JA. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Werkst Korros. 1978;29:515–9.

    Article  Google Scholar 

  72. Andrade C, Rebolledo N. Accelerated evaluation of corrosion inhibition by means of the integral corrosion test. In: Proceedings of the 3rd international conference on concrete repair, rehabilitation and retrofitting (ICCRRR), Cape Town, South Africa, 2012.

    Google Scholar 

  73. Basheer PAM, Andrews RJ, Robinson DJ, Long AE. ‘PERMIT’ ion migration test for measuring the chloride ion transport of concrete on site. NDT and E Int. 2005;38(3):219–29.

    Article  Google Scholar 

  74. Nanukuttan SV, Basheer PAM, Robinson DJ. Further developments of the permit ion migration test for determining the chloride diffusivity of concrete. In: Forde MC editor. Structural faults and repair-06, Edinburgh, Vol. CD Rom, Engineering Technic Press; 2006. 14 pp.

    Google Scholar 

  75. Nanukuttan S, Basheer PAM, Robinson DJ. Determining the chloride diffusivity of concrete in-situ using Permit ion migration test. In: Proceedings of the concrete platform conference, Belfast, 2007; ISBN:978-0-85389-913-6, pp 217–228.

    Google Scholar 

  76. Stipanović I, Bjegović D, Mikulić D, Serdar M. Time dependent changes of durability properties of concrete from Maslenica Bridge at the Adriatic coast. In: Ferreira RM, Gulikers J, Andrade C, Bagneux C, editors. Integral service life modelling of concrete structures. RILEM Publications S.A.R.L.; 2007. pp 87–95.

    Google Scholar 

  77. Fluge F. Marine chlorides—a probabilistic approach to derive provisions for EN 206-1, DuraNet, third workshop, service life design of concrete Structures—from theory to standardisation, Tromsø, 2001.

    Google Scholar 

  78. Tang L. Chloride transport in concrete—measurement and prediction, PhD Thesis, Chalmers University of Technology, Sweden, 1996.

    Google Scholar 

  79. RILEM recommendation. Test methods for on-site measurement of resistivity of concrete. Mater Struct. 2000; 33:603–611.

    Google Scholar 

  80. Morris W, Moreno EI, Sagues AA. Practical evaluation of resistivity of concrete in test cylinders using Wenner array probe. Cem Concr Res. 1996; 26(12):1779–1787.

    Google Scholar 

  81. Streicher PE, Alexander MG. A chloride conduction test for concrete. Cem Concr Res. 1995;25(6):1284–94.

    Article  Google Scholar 

  82. Ewins AJ. Resistivity measurements in concrete. Brit J NDT. 1990;32(3):120–6.

    Google Scholar 

  83. Millard SG. Reinforced concrete resistivity measurement techniques. In: Proc. Institution Civil Engineers, 1991. part 2, pp 71–88.

    Google Scholar 

  84. ASTM G57-95a, Standard test method for field measurement of soil resistivity using the Wenner four-electrode method, 2001.

    Google Scholar 

  85. Alexander MG, Ballim Y, Mackechnie JM. Concrete durability index testing manual, Research Monograph no. 4, Departments of Civil Engineering, University of Cape Town and University of the Witwatersrand, 1999.

    Google Scholar 

  86. Mackechnie JR. Predictions of reinforced concrete durability in the marine environment, Research Monograph No. 1, Department of Civil Engineering, University of Cape Town, 2001. 28 pp.

    Google Scholar 

  87. Andrade C, Alonso C, Gulikers J, Polder R, Cigna R, Vennesland O, Salta M, Raharinaivo A, Elsener B. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, RILEM TC 154-EMC Electrochemical techniques for measuring metallic corrosion. Mater Struct. 2004;37:623–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Bjegović, D. et al. (2016). Test Methods for Concrete Durability Indicators. In: Beushausen, H., Fernandez Luco, L. (eds) Performance-Based Specifications and Control of Concrete Durability. RILEM State-of-the-Art Reports, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7309-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7309-6_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7308-9

  • Online ISBN: 978-94-017-7309-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics