Guess Your Neighbour’s Input: No Quantum Advantage but an Advantage for Quantum Theory

Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 181)

Abstract

Quantum mechanics dramatically differs from classical physics. An interesting consequence of this fact is that quantum resources offer an advantage over classical resources in many information-theoretic tasks. In quantum information, the goal of which is to understand information processing from a quantum perspective, it is thus natural to focus on tasks where quantum resources provide an advantage over classical ones, and to overlook tasks where quantum mechanics provides no advantage. But are the latter tasks really useless from a more general perspective? In this review we focus on a simple information-theoretic game called ‘guess your neighbour’s input’, for which classical and quantum players perform equally well. Interestingly, this seemingly innocuous game turns out to be useful in various contexts. From a fundamental point of view, the game provides a sharp separation between quantum mechanics and other more general physical theories, hence bringing a deeper understanding of the foundations of quantum mechanics. The game also finds unexpected applications in quantum foundations and quantum information theory, related to Gleason’s theorem, and to bound entanglement and unextendible product bases.

Notes

Acknowledgments

Discussions with T. Fritz are acknowledged. This work was supported by the ERC starting grant PERCENT, the EU AQUTE and QCS projects, the Spanish CHIST-ERA DIQIP, FIS2008-00784 and FIS2010-14830 projects, and the UK EPSRC. R. A. is supported by the Spanish MINCIN through the Juan de la Cierva program.

References

  1. 1.
  2. 2.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  3. 3.
    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. mod. Phys. 86, 419 (2014)Google Scholar
  4. 4.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Buhrman, R. Cleve, S. Massar, R. de Wolf, Rev. Mod. Phys. 82, 665 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    J. Barrett, L. Hardy, A. Kent, Phys. Rev. Lett. 95, 010503 (2005); A. Acín, et al., Phys. Rev. Lett. 98, 230501 (2007); L. Masanes, S. Pironio, A. Acín, Nat. Commun. 2, 238 (2011)Google Scholar
  7. 7.
    S. Pironio, et al., Nature 464, 1021 (2010); R. Colbeck, Ph.D. thesis, University of Cambridge; R. Colbeck, A. Kent, J. Phys. A: Math. Theor. 44(9), 095305 (2011)Google Scholar
  8. 8.
    S. Popescu, R. Rohrlich, Found. Phys. 24, 379 (1994)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Brassard, Nat. Phys. 1, 2 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Popescu, Nat. Phys. 2, 507 (2006)CrossRefGoogle Scholar
  11. 11.
    R. Clifton, J. Bub, H. Halvorson, Found. Phys. 33, 1561 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. van Dam, Nonlocality & communication complexity. Ph.D. thesis, University of Oxford (2000), arXiv:quant-ph/0501159v1
  13. 13.
    G. Brassard, H. Buhrman, N. Linden, A.A. Méthot, A. Tapp, F. Unger, Phys. Rev. Lett. 96, 250401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    N. Brunner, P. Skrzypczyk, Phys. Rev. Lett. 102, 160403 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Żukowski, Nature 461, 1101 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J. Allcock, N. Brunner, M. Pawłowski, V. Scarani, Phys. Rev. A 80, 040103(R) (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Navascues, H. Wunderlich, Proc. R. Soc. Lond. A 466, 881 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Barnum, S. Beigi, S. Boixo, M.B. Elliott, S. Wehner, Phys. Rev. Lett. 104, 140401 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A. Acín, R. Augusiak, D. Cavalcanti, C. Hadley, J.K. Korbicz, M. Lewenstein, M. Piani, Phys. Rev. Lett. 104, 140404 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M.L. Almeida, J.-D. Bancal, N. Brunner, A. Acín, N. Gisin, S. Pironio, Phys. Rev. Lett. 104, 230404 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A. Winter, Nature 466, 1053 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    R. Gallego, L. Würflinger, A. Acín, M. Navascués, Phys. Rev. Lett. 107, 210403 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    T.H. Yang, D. Cavalcanti, M. Almeida, C. Teo, V. Scarani, New J. Phys. 14, 013061 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Gleason, J. Math. Mech. 6, 885 (1957)MathSciNetGoogle Scholar
  25. 25.
    R. Augusiak, J. Stasińska, C. Hadley, J.K. Korbicz, M. Lewenstein, A. Acín, Phys. Rev. Lett. 107, 070401 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R. Augusiak, T. Fritz, M. Kotowski, M. Kotowski, M. Pawłowski, M. Lewenstein, A. Acín, Phys. Rev. A 85, 042113 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Phys. Rev. Lett. 82, 5385 (1999)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, D. Roberts, Phys. Rev. A 71, 022101 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    S. Pironio, J.-D. Bancal, V. Scarani, J. Phys. A: Math. Theor. 44, 065303 (2011)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    C. Śliwa, Phys. Lett. A 317, 165 (2003)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    P. Busch, Phys. Rev. Lett. 91, 120403 (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Foulis, C. Randall, Interpret. Found. Quantum Theory 5, 920 (1979); M. Kläy, C. Randall, D. Foulis, Int. J. Theor. Phys. 26, 199 (1987); H. Barnum, C.A. Fuchs, J.M. Renes, A. Wilce, arXiv:quant-ph/0507108
  34. 34.
    N.R. Wallach, arXiv:quant-ph/0002058
  35. 35.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996); B.M. Terhal, Phys. Lett. A 271, 319 (2000)Google Scholar
  36. 36.
    A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972); M.-D. Choi, Linear Algebra Appl. 10, 285 (1975)Google Scholar
  37. 37.
    M. Horodecki, P. Horodecki, R. Horodecki, Open Syst. Inf. Dyn. 13, 103 (2006)MathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Ahanj, S. Kunkri, A. Rai, R. Rahaman, P.S. Joag, Phys. Rev. A 81, 032103 (2010)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    D. Cavalcanti, A. Salles, V. Scarani, Nat. Commun. 1, 136 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    R. Gallego, L. Würflinger, A. Acín, M. Navascués, Phys. Rev. Lett. 109, 070401 (2012)Google Scholar
  41. 41.
    J. Barrett, S. Pironio, J.-D. Bancal, N. Gisin, Phys. Rev. A 88, 014102 (2013)Google Scholar
  42. 42.
    D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Commun. Math. Phys. 238, 379 (2003)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    J.M. Leinaas, J. Myrheim, P.Ø. Sollid, Phys. Rev. A 81, 062330 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Ł. Skowronek, J. Math. Phys. 52, 122202 (2011)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    J. Niset, N.J. Cerf, Phys. Rev. A 74, 052103 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    S.B. Bravyi, Quantum Inf. Process. 3, 309 (2004)MathSciNetCrossRefGoogle Scholar
  47. 47.
    S. Pironio, J. Math. Phys. 46, 062112 (2005)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    T. Fritz, A.B. Sainz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, A. Acin, Nat. Commun. 4, 2263 (2013)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.ICFO–Institut de Ciències FotòniquesCastelldefelsSpain
  2. 2.ICREA–Institució Catalana de Recerca I Estudis AvançatsCastelldefelsSpain
  3. 3.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  4. 4.Département de Physique ThéoriqueUniversité de GenèveGenèveSwitzerland
  5. 5.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK

Personalised recommendations