Macroscopic Locality

  • Miguel NavascuésEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 181)


The principle of macroscopic locality states that two parties performing coarse-grained extensive measurements over independent correlated pairs of physical systems can always interpret their observations with a classical theory. In this chapter, we briefly review this principle and generalize it to multipartite scenarios where each party is allowed to perform sequential measurements. We prove that this extended axiom is also satisfied by quantum theory and characterize the maximal set of correlations compatible with it. Finally, we observe how bipartite and tripartite correlations limited by macroscopic locality alone differ from the quantum set.


Quantum Correlation Classical Physic Bell Inequality Information Causality Positive Semidefinite Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Kofler, C. Brukner, Phys. Rev. Lett. 99, 180403 (2007)ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    B. Dakic, C. Brukner, arXiv:0911.0695
  4. 4.
    Ll Masanes, M.P. Mueller, New J. Phys. 13, 063001 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Chiribella, G.M. D’Ariano, P. Perinotti, Phys. Rev. A 84, 012311 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    L. Hardy, arXiv:1104.2066
  7. 7.
    G. de la Torre, Ll. Masanes, A.J. Short, M.P. Mueller, arXiv:1110.5482
  8. 8.
    D. Rohrlich, S. Popescu, Found. Phys. 24(3), 279 (1995)MathSciNetGoogle Scholar
  9. 9.
    G. Brassard, H. Buhrman, N. Linden, A.A. Methot, A. Tapp, F. Unger, Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 96, 250401 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Linden, S. Popescu, A.J. Short, A. Winter, Phys. Rev. Lett. 99, 180502 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Zukowski, Nature 461, 1101 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Navascués, H. Wunderlich, Proc. R. Soc. A 466, 881–890 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    N. Brunner, P. Skrzypczyk, Phys. Rev. Lett. 102, 160403 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    B.S. Tsirelson, J. Sov. Math. 36, 557 (1987)CrossRefGoogle Scholar
  15. 15.
    R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1999)Google Scholar
  16. 16.
    L. Vandenberghe, S. Boyd, SIAM Rev. 38, 49 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Navascués, S. Pironio, A. Acín, Phys. Rev. Lett. 98, 010401 (2007); M. Navascués, S. Pironio, A. Acín, New J. Phys. 10(7), 073013 (2008)Google Scholar
  18. 18.
    J. Allcock, N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, T. Vertesi, Phys. Rev. A 80, 062107 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    B.S. Cirel’son, Lett. Math. Phys. 4, 93 (1980)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    T.H. Yang, M. Navascués, L. Sheridan, V. Scarani, Phys. Rev. A 83, 022105 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    R. Werner, M. Wolf, QIC 1(3), 1 (2001)MathSciNetGoogle Scholar
  23. 23.
    J. Allcock, N. Brunner, M. Pawlowski, V. Scarani, Phys. Rev. A 80, 040103(R) (2009)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Cavalcanti, A. Salles, V. Scarani, Nat. Commun. 1, 136 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Ll Masanes, A. Acín, N. Gisin, Phys. Rev. A. 73, 012112 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    B. Toner, Proc. R. Soc. A 465, 59–69 (2009)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    B. Toner, F. Verstraete, arXiv:quant-ph/0611001
  28. 28.
    J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB,
  29. 29.
    J.F. Sturm, SeDuMi, a MATLAB toolbox for optimization over symmetric cones,
  30. 30.
    L. Landau, Found. Phys. 18, 449–460 (1988)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Tijms, Understanding Probability: Chance Rules in Everyday Life (Cambridge University Press, Cambridge, 2004)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK

Personalised recommendations