Skip to main content

“Wunderlich, Meet Kirchhoff”: A General and Unified Description of Elastic Ribbons and Thin Rods

  • Chapter
The Mechanics of Ribbons and Möbius Bands

Abstract

The equations for the equilibrium of a thin elastic ribbon are derived by adapting the classical theory of thin elastic rods. Previously established ribbon models are extended to handle geodesic curvature, natural out-of-plane curvature, and a variable width. Both the case of a finite width (Wunderlich’s model) and the limit of small width (Sadowksky’s model) are recovered. The ribbon is assumed to remain developable as it deforms, and the direction of the generatrices is used as an internal variable. Internal constraints expressing inextensibility are identified. The equilibrium of the ribbon is found to be governed by an equation of equilibrium for the internal variable involving its second-gradient, by the classical Kirchhoff equations for thin rods, and by specific, thin-rod-like constitutive laws; this extends the results of Starostin and van der Heijden (Nat. Mater. 6(8):563–567, 2007) to a general ribbon model. Our equations are applicable in particular to ribbons having geodesic curvature, such as an annulus cut out in a piece of paper. Other examples of application are discussed. By making use of a material frame rather than the Frenet–Serret frame, the present work unifies the description of thin ribbons and thin rods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armon, S., Efrati, E., Kupferman, R., Sharon, E.: Geometry and mechanics in the opening of chiral seed pods. Science (New York) 333(6050), 1726–1730 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21940888. doi:10.1126/science.1203874

    Article  Google Scholar 

  2. Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press, London (2010)

    Google Scholar 

  3. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2008)

    Article  Google Scholar 

  4. Cheng-Chung, H.: A Differential-Geometric Criterion for a Space Curve to be Closed. Proceedings of the American Mathematical Society 83(2), 357–361 (1981). http://www.jstor.org/stable/2043528. doi:10.2307/2043528

    Article  MathSciNet  MATH  Google Scholar 

  5. Chopin, J., Kudrolli, A.: Helicoids, wrinkles, and loops in twisted ribbons. Phys. Rev. Lett. 111(17), 174302 (2013)

    Article  Google Scholar 

  6. Chouaïeb, N.: Kirchhoff’s problem of helical solutions of uniform rods and stability properties. Ph.D. thesis, École polytechnique fédérale de Lausanne, Lausanne, Switzerland (2003)

    Google Scholar 

  7. Cohen, H.: A non-linear theory of elastic directed curves. International Journal of Engineering Science 4(5), 511–524 (1966). http://www.sciencedirect.com/science/article/pii/0020722566900139. doi:10.1016/0020-7225(66)90013-9

    Article  Google Scholar 

  8. Coleman, B., Swigon, D.: Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. Journal of Elasticity 60(3), 173–221 (2000). doi:10.1023/A:1010911113919

    Article  MathSciNet  MATH  Google Scholar 

  9. Cosserat, E., Cosserat, F.: Théorie des Corps déformables. A. Hermann et Fils, Paris (1909)

    Google Scholar 

  10. Dias, M.A., Audoly, B.: A non-linear rod model for folded elastic strips. J. Mech. Phys. Solids 62, 57–80 (2014). http://linkinghub.elsevier.com/retrieve/pii/S0022509613001658. doi:10.1016/j.jmps.2013.08.012

    Article  MathSciNet  Google Scholar 

  11. Dias, M.A., Dudte, L.H., Mahadevan, L., Santangelo, C.D.: Geometric Mechanics of Curved Crease Origami. Phys. Rev. Lett. 109(11), 1–5 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.109.114301. doi:10.1103/PhysRevLett.109.114301

    Article  Google Scholar 

  12. Efimov, N.V.: Some problems in the theory of space curves. Uspekhi Mat. Nauk 2(3), 193–194 (1947). http://mi.mathnet.ru/umn6961

    Google Scholar 

  13. Ericksen, J.L.: Simpler static problems in nonlinear theories of rods. International Journal of Solids and Structures 6(3), 371–377 (1970). http://www.sciencedirect.com/science/article/pii/0020768370900454. doi:10.1016/0020-7683(70)90045-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Frenchel, W.: On the differential geometry of closed space curves. Bulletin of the American Mathematical Society 57(1), 44–54 (1951). http://projecteuclid.org/euclid.bams/1183515801

    Article  MathSciNet  Google Scholar 

  15. Giomi, L., Mahadevan, L.: Statistical mechanics of developable ribbons. Phys. Rev. Lett. 104, 238104 (2010). http://link.aps.org/doi/10.1103/PhysRevLett.104.238104. doi:10.1103/PhysRevLett.104.238104

    Article  Google Scholar 

  16. Green, A.E.: The elastic stability of a thin twisted strip. II. Proc. R. Soc. Lond. A 161, 197–220 (1937)

    Article  MATH  Google Scholar 

  17. Korte, A.P., Starostin, E.L., van der Heijden, G.H.M.: Triangular buckling patterns of twisted inextensible strips. Proc. R. Soc. A, Math. Phys. Eng. Sci. 467(2125), 285–303 (2010). http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2010.0200. doi:10.1098/rspa.2010.0200

    Article  Google Scholar 

  18. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  19. Mahadevan, L., Keller, J.B.: The shape of a Möbius band. Proc. R. Soc. A, Math. Phys. Eng. Sci. 440, 149–162 (1993)

    Article  MathSciNet  Google Scholar 

  20. Mockensturm, E.M.: The elastic stability of twisted plates. J. Appl. Mech. 68(4), 561–567 (2001)

    Article  MATH  Google Scholar 

  21. Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbares Möbiusschen Bandes und Zurückfürung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. Preuss. Akad. Wiss. 22, 412–415 (1930)

    Google Scholar 

  22. Seffen, K.A., Audoly, B.: Buckling of a closed, naturally curved ribbon (2014, in preparation)

    Google Scholar 

  23. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 3, 3rd edn. Publish or Perish, Inc., Houston (1999)

    MATH  Google Scholar 

  24. Starostin, E., van der Heijden, G.: Tension-induced multistability in inextensible helical ribbons. Phys. Rev. Lett. 101(8), 084301 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.101.084301. doi:10.1103/PhysRevLett.101.084301

    Article  Google Scholar 

  25. Starostin, E.L., van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6(8), 563–567 (2007). http://www.ncbi.nlm.nih.gov/pubmed/17632519. doi:10.1038/nmat1929

    Article  Google Scholar 

  26. Steigmann, D.J., Faulkner, M.G.: Variational theory for spatial rods. J. Elast. 33(1), 1–26 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, Z.L., Moshe, M., Greener, J., Therien-Aubin, H., Nie, Z., Sharon, E., Kumacheva, E.: Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23481394. doi:10.1038/ncomms2549

    Article  Google Scholar 

  28. Wunderlich, W.: Über ein abwickelbares Möbiusband. Monatshefte Math. 66(3), 276–289 (1962). http://link.springer.com/10.1007/BF01299052. doi:10.1007/BF01299052

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Y., Tobias, I., Olson, W.K.: Finite element analysis of DNA supercoiling. J. Chem. Phys. 98(2), 1673–1686 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Audoly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dias, M.A., Audoly, B. (2016). “Wunderlich, Meet Kirchhoff”: A General and Unified Description of Elastic Ribbons and Thin Rods. In: Fosdick, R., Fried, E. (eds) The Mechanics of Ribbons and Möbius Bands. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7300-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7300-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7299-0

  • Online ISBN: 978-94-017-7300-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics