Abstract
The equations for the equilibrium of a thin elastic ribbon are derived by adapting the classical theory of thin elastic rods. Previously established ribbon models are extended to handle geodesic curvature, natural out-of-plane curvature, and a variable width. Both the case of a finite width (Wunderlich’s model) and the limit of small width (Sadowksky’s model) are recovered. The ribbon is assumed to remain developable as it deforms, and the direction of the generatrices is used as an internal variable. Internal constraints expressing inextensibility are identified. The equilibrium of the ribbon is found to be governed by an equation of equilibrium for the internal variable involving its second-gradient, by the classical Kirchhoff equations for thin rods, and by specific, thin-rod-like constitutive laws; this extends the results of Starostin and van der Heijden (Nat. Mater. 6(8):563–567, 2007) to a general ribbon model. Our equations are applicable in particular to ribbons having geodesic curvature, such as an annulus cut out in a piece of paper. Other examples of application are discussed. By making use of a material frame rather than the Frenet–Serret frame, the present work unifies the description of thin ribbons and thin rods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armon, S., Efrati, E., Kupferman, R., Sharon, E.: Geometry and mechanics in the opening of chiral seed pods. Science (New York) 333(6050), 1726–1730 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21940888. doi:10.1126/science.1203874
Audoly, B., Pomeau, Y.: Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press, London (2010)
Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2008)
Cheng-Chung, H.: A Differential-Geometric Criterion for a Space Curve to be Closed. Proceedings of the American Mathematical Society 83(2), 357–361 (1981). http://www.jstor.org/stable/2043528. doi:10.2307/2043528
Chopin, J., Kudrolli, A.: Helicoids, wrinkles, and loops in twisted ribbons. Phys. Rev. Lett. 111(17), 174302 (2013)
Chouaïeb, N.: Kirchhoff’s problem of helical solutions of uniform rods and stability properties. Ph.D. thesis, École polytechnique fédérale de Lausanne, Lausanne, Switzerland (2003)
Cohen, H.: A non-linear theory of elastic directed curves. International Journal of Engineering Science 4(5), 511–524 (1966). http://www.sciencedirect.com/science/article/pii/0020722566900139. doi:10.1016/0020-7225(66)90013-9
Coleman, B., Swigon, D.: Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. Journal of Elasticity 60(3), 173–221 (2000). doi:10.1023/A:1010911113919
Cosserat, E., Cosserat, F.: Théorie des Corps déformables. A. Hermann et Fils, Paris (1909)
Dias, M.A., Audoly, B.: A non-linear rod model for folded elastic strips. J. Mech. Phys. Solids 62, 57–80 (2014). http://linkinghub.elsevier.com/retrieve/pii/S0022509613001658. doi:10.1016/j.jmps.2013.08.012
Dias, M.A., Dudte, L.H., Mahadevan, L., Santangelo, C.D.: Geometric Mechanics of Curved Crease Origami. Phys. Rev. Lett. 109(11), 1–5 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.109.114301. doi:10.1103/PhysRevLett.109.114301
Efimov, N.V.: Some problems in the theory of space curves. Uspekhi Mat. Nauk 2(3), 193–194 (1947). http://mi.mathnet.ru/umn6961
Ericksen, J.L.: Simpler static problems in nonlinear theories of rods. International Journal of Solids and Structures 6(3), 371–377 (1970). http://www.sciencedirect.com/science/article/pii/0020768370900454. doi:10.1016/0020-7683(70)90045-4
Frenchel, W.: On the differential geometry of closed space curves. Bulletin of the American Mathematical Society 57(1), 44–54 (1951). http://projecteuclid.org/euclid.bams/1183515801
Giomi, L., Mahadevan, L.: Statistical mechanics of developable ribbons. Phys. Rev. Lett. 104, 238104 (2010). http://link.aps.org/doi/10.1103/PhysRevLett.104.238104. doi:10.1103/PhysRevLett.104.238104
Green, A.E.: The elastic stability of a thin twisted strip. II. Proc. R. Soc. Lond. A 161, 197–220 (1937)
Korte, A.P., Starostin, E.L., van der Heijden, G.H.M.: Triangular buckling patterns of twisted inextensible strips. Proc. R. Soc. A, Math. Phys. Eng. Sci. 467(2125), 285–303 (2010). http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2010.0200. doi:10.1098/rspa.2010.0200
Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)
Mahadevan, L., Keller, J.B.: The shape of a Möbius band. Proc. R. Soc. A, Math. Phys. Eng. Sci. 440, 149–162 (1993)
Mockensturm, E.M.: The elastic stability of twisted plates. J. Appl. Mech. 68(4), 561–567 (2001)
Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbares Möbiusschen Bandes und Zurückfürung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. Preuss. Akad. Wiss. 22, 412–415 (1930)
Seffen, K.A., Audoly, B.: Buckling of a closed, naturally curved ribbon (2014, in preparation)
Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 3, 3rd edn. Publish or Perish, Inc., Houston (1999)
Starostin, E., van der Heijden, G.: Tension-induced multistability in inextensible helical ribbons. Phys. Rev. Lett. 101(8), 084301 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.101.084301. doi:10.1103/PhysRevLett.101.084301
Starostin, E.L., van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6(8), 563–567 (2007). http://www.ncbi.nlm.nih.gov/pubmed/17632519. doi:10.1038/nmat1929
Steigmann, D.J., Faulkner, M.G.: Variational theory for spatial rods. J. Elast. 33(1), 1–26 (1993)
Wu, Z.L., Moshe, M., Greener, J., Therien-Aubin, H., Nie, Z., Sharon, E., Kumacheva, E.: Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23481394. doi:10.1038/ncomms2549
Wunderlich, W.: Über ein abwickelbares Möbiusband. Monatshefte Math. 66(3), 276–289 (1962). http://link.springer.com/10.1007/BF01299052. doi:10.1007/BF01299052
Yang, Y., Tobias, I., Olson, W.K.: Finite element analysis of DNA supercoiling. J. Chem. Phys. 98(2), 1673–1686 (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Dias, M.A., Audoly, B. (2016). “Wunderlich, Meet Kirchhoff”: A General and Unified Description of Elastic Ribbons and Thin Rods. In: Fosdick, R., Fried, E. (eds) The Mechanics of Ribbons and Möbius Bands. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7300-3_7
Download citation
DOI: https://doi.org/10.1007/978-94-017-7300-3_7
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-017-7299-0
Online ISBN: 978-94-017-7300-3
eBook Packages: EngineeringEngineering (R0)