Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 42))

Summary

Canopy photosynthesis models (CPMs) calculate canopy photosynthetic rate as a sum of leaf photosynthetic rate. Here we focus on one-dimensional CPMs and show that simulated rates of canopy photosynthesis vary depending on whether multiple layers or a monolayer are considered and on whether direct and diffuse light sources are considered. We discuss how canopy photosynthetic rates vary depending on plant traits, which can differ within and among species; canopy photosynthetic rates are sensitive to leaf area index, light extinction coefficient, leaf photosynthetic capacity (photosynthetic nitrogen use efficiency), and nitrogen allocation between leaves. CPMs can predict exchange rates not only for carbon but also for water and energy. The predicted rates are consistent with observations. Finally, we describe how CPMs have been utilized for vegetation and global studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Photosynthetic rate

a l :

Albedo

a V :

Slope of V cmax-N relationship

BLM:

Big-leaf model

C i :

Intercellular CO2 partial pressure

c p :

Specific heat of air

CPM:

Canopy photosynthesis model

d :

Zero-plane displacement

E :

Evapotranspiration rate

e :

Vapor pressure

G :

Heat flux into thermal storage

g :

Conductance

GPP:

Gross primary production

H :

Sensible heat flux

I c :

Absorbed light per unit leaf area

IBP:

International Biological Programme

k :

Extinction coefficient

L :

Cumulative leaf area index

LUE :

Light use efficiency

l :

Monin-Obukhov length

LAI :

Leaf area index

m a :

and m e Molecular weights of air and water

MDDM:

Multi-layer model under direct-diffuse light

MSM:

Multi-layer model with simple light extinction

N :

Nitrogen content

NDVI :

Normalized difference vegetation index

NEE:

Net ecosystem CO2 exchange

NPP:

Net primary production

P :

Atmospheric pressure

PFD :

Photosynthetially active photon flux density

R :

Radiation

RE:

Ecosystem respiration

SS:

Sun-shade big-leaf model

T :

Temperature

u :

Wind velocity

V cmax :

Maximum rate of carboxylation

z :

Height

z 0H :

and z 0M Roughness lengths for heat and momentum

γ :

Psychrometric constant in Eq. 9.6

κ :

von Karman constant

ρ :

Density of air

λ :

Heat of vaporization

θ :

Convexity of photosynthetic curves

χ H :

and χ M Dimensionless temperature and velocity profiles

X dif :

X for diffuse light

X dir :

X for direct light

X sca :

X for scattering light

X sh :

X for shade leaf

X sca :

X for sunlit leaf

n :

Value of X at the top of the canopy

X t :

Value of X per ground area

References

  • Amthor JS (1994) Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynth Res 39:321–350

    Article  PubMed  CAS  Google Scholar 

  • Anten NPR (1997) Modelling canopy photosynthesis using parameters determined from simple non-destructive measurements. Ecol Res 12:77–88

    Article  Google Scholar 

  • Anten NPR (2016) Optimization and game theory in canopy models. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 355–377

    Chapter  Google Scholar 

  • Anten NPR, Bastiaans L (2016) The use of canopy models to analyze light competition among plants. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 379–398

    Chapter  Google Scholar 

  • Anten NPR, Hirose T (2003) Shoot structure, leaf physiology and carbon gain of species in a grassland. Ecology 84:955–968

    Article  Google Scholar 

  • Anten NPR, Werger MJA (1996) Canopy structure and nitrogen distribution in dominant and subordinate plants in a dense stand of Amaranthus dubius (L.) with a size hierarchy of individuals. Oecologia 105:30–37

    Article  Google Scholar 

  • Anten NPR, Schieving F, Werger MJA (1995a) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonoous species. Oecologia 101:504–513

    Article  Google Scholar 

  • Anten NPR, Schieving F, Medina E, Werger MJA, Schuffelen P (1995b) Optimal leaf area indices in C3 and C4 mono- and dicotyledonous species at low and high nitrogen availability. Physiol Plant 95:541–550

    Article  CAS  Google Scholar 

  • Anten NPR, Hikosaka K, Hirose T (2000) Nitrogen utilization and the photosynthetic system. In: Marshal B, Roberts J (eds) Leaf Development and Canopy Growth. Sheffield Academic, Sheffield, pp 171–203

    Google Scholar 

  • Anten NPR, Hirose T, Onoda Y, Kinugasa T, Kim HY, Okada M, Kobayashi K (2004) Elevated CO2 and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytol 161:459–471

    Article  Google Scholar 

  • Baldocchi D (1994) An analytical solution for coupled leaf photosynthesis and stomatal conductance models. Tree Physiol 14:1069–1079

    Article  PubMed  Google Scholar 

  • Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapor exchange from leaf to canopy in a deciduous forest: model testing and application. Plant Cell Environ 18:1157–1173

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, …, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins I (ed) Progress in Photosynthesis Research. Martinus Nijhoff, La Hague, pp 221–224

    Chapter  Google Scholar 

  • Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116, G02014. doi:10.1029/2010JG001593

    Google Scholar 

  • Borjigidai A, Hikosaka K, Hirose T (2009) Carbon balance in a monospecific stand of an annual, Chenopodium album, at an elevated CO2 concentration. Plant Ecol 203:33–44

    Article  Google Scholar 

  • Boysen Jensen P (1932) Die Stoffproduktion der Pflanzen. Gustav Fischer, Jena

    Google Scholar 

  • Campbell GS, Norman JM (1998) An Introduction to Environmental Biophysics. Springer, New York

    Book  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore BI, Churkina G, Nemry B, Ruimy A, …, Potsdam-NPP-model-intercomparison-participants (1999) Comparing global NPP models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol 5(Suppl 1): 1–15

    Google Scholar 

  • de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • de Wit CT (1965) Photosynthesis of Leaf Canopies. Pudoc, Wageningen

    Google Scholar 

  • Evers JB (2016) Simulating crop growth and development using functional-structural plant modeling. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 219–236

    Google Scholar 

  • Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Philos Trans R Soc B 323:357–367

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Friend AD (2001) Modeling canopy CO2 fluxes: are ‘big-leaf’ simplifications justified? Glob Ecol Biogeogr 10:603–619

    Article  Google Scholar 

  • Friend AD, Lucht W, Rademacher TT, Keribin RM, Betts R, Cadule P, Ciais P, …, Woodward FI (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Nat Acad Sci USA 111:3280–3285

    Google Scholar 

  • Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Goetz SJ, Prince SD, Goward SN, Thawley MM, Small J (1999) Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecol Model 122:239–255

    Article  Google Scholar 

  • Goudriaan J (1977) Crop Micrometeorology: A simulation study, Simulation monographs. Pudoc, Wageningen

    Google Scholar 

  • Goudriaan J (2016) Light distribution. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Goudriaan J, van Laar HH (1994) Modelling Potential Crop Growth Processes. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski S, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038

    Article  PubMed  Google Scholar 

  • Gutschick VP (2016) Leaf energy balance: basics, and modeling from leaves to canopies. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 23–58

    Chapter  Google Scholar 

  • Harley PC, Baldocchi DD (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parameterization. Plant Cell Environ 18:1146–1156

    Article  Google Scholar 

  • Harley PC, Tenhunen JD (1991) Modelling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modelling Crop Photosynthesis – From Biochemistry to Canopy. CSSA, Madison, pp 17–39

    Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling the effects of growth in elevated CO2 on photosynthesis in cotton. Plant Cell Environ 15:271–282

    Article  CAS  Google Scholar 

  • Hikosaka K (2014) Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant Cell Environ 9:2077–2085

    Article  Google Scholar 

  • Hikosaka K, Shigeno A (2009) The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160:443–451

    Article  PubMed  Google Scholar 

  • Hikosaka K, Sudoh S, Hirose T (1999) Light acquisition and use of individuals competing in a dense stand of an annual herb, Xanthium canadense. Oecologia 118:388–396

    Article  Google Scholar 

  • Hikosaka K, Yamano T, Nagashima H, Hirose T (2003) Light-acquisition and use of individuals as influenced by elevated CO2 in even-aged monospecific stands of Chenopodium album. Funct Ecol 17:786–795

    Article  Google Scholar 

  • Hikosaka K, Noguchi K, Terashima I (2016) Modeling leaf gas exchange. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 61–100

    Chapter  Google Scholar 

  • Hirose T (2005) Development of the Monsi–Saeki theory on canopy structure and function. Ann Bot 95:483–494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hirose T, Werger MJA (1987a) Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solidago altissima stand. Physiol Plant 70:215–222

    Article  CAS  Google Scholar 

  • Hirose T, Werger MJA (1987b) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526

    Article  Google Scholar 

  • Hirose T, Ackerly DD, Traw MB, Ramseier D, Bazzaz FA (1997) CO2 elevation, canopy photosynthesis, and optimal leaf area index. Ecology 78:2339–2350

    Google Scholar 

  • Huntzinger DN, Schwalm C, Michalak AM, Schaefer K, King AW, Wei Y, Jacobson A, …, Zhu Q (2013) The North American carbon program multi-scale synthesis and terrestrial model intercomparison project: part 1: overview and experimental design. Geosci Model Dev 6:2121–2133

    Google Scholar 

  • Ichii K, Kondo M, Lee Y-H, Wang S-Q, Kim J, Ueyama M, Lim H-J, …, Zaho F-H (2013) Site-level model-data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: toward future modeling efforts. J For Res 18:13–20

    Google Scholar 

  • Ito A (2011) A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Glob Chang Biol 17:3161–3175

    Article  Google Scholar 

  • Ito A, Inatomi M (2012) Water-use efficiency of the terrestrial biosphere: a model analysis on interactions between the global carbon and water cycles. J Hydrometeorol 13:681–694

    Article  Google Scholar 

  • Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol Model 151:147–179

    Article  Google Scholar 

  • Ito A, Saigusa N, Murayama N, Yamamoto S (2005) Modeling of gross and net carbon dioxide exchange over a cool-temperate deciduous broad-leaved forest in Japan: analysis of seasonal and interannual change. Agric For Meteorol 134:122–134

    Article  Google Scholar 

  • Kamiyama C, Oikawa S, Kubo T, Hikosaka K (2010) Light interception in species with different functional types coexisting in moorland plant communities. Oecologia 164:591–599

    Article  PubMed  Google Scholar 

  • Kramer K, Leinonen KI, Bartelink HH, Berbigier P, Borghetti M, Bernhofer C, Cienciala E, …, Vesala T (2002) Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Glob Chang Biol 8:213–230

    Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, …, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19: GB1015

    Google Scholar 

  • Kumagai T (2016) Observation and modeling of net ecosystem carbon exchange over canopy. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 269–287

    Chapter  Google Scholar 

  • Kumagai T, Ichie T, Yoshimura M, Yamashita M, Kenzo T, Saitoh TM, Ohashi M, …, Komatsu H (2006) Modeling CO2 exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. J Geophys Res 111:D10107

    Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Levy PE, Cannell MGR, Friend AD (2004) Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob Environ Chang 14:21–30

    Article  Google Scholar 

  • Lieth H (1975) Modeling the primary productivity of the world. In: Lieth H, Whittaker RH (eds) Primary Productivity of the Biosphere. Springer, Berlin, pp 237–263

    Chapter  Google Scholar 

  • Lloyd J, Grace J, Miranda AC, Meir P, Miranda HS, Wright IR, Gash JHC, McIntyre J (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell Environ 18:1129–1145

    Article  Google Scholar 

  • McNaughton KG, Spriggs TW (1986) A mixed layer model for regional evaporation. Bound Lay Meteorol 34:243–262

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vörösmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52. Translated as: Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Google Scholar 

  • Monsi M, Uchijima Z, Oikawa T (1973) Structure of foliage canopies and photosynthesis. Annu Rev Ecol Syst 4:301–327

    Article  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity of terrestrial ecosystems. J Appl Ecol 9:747–766

    Article  Google Scholar 

  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Phil Trans R Soc London Ser B 281:277–294

    Article  Google Scholar 

  • Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, …, Ogee J (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11:2211–2233

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü (2016) Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 101–141

    Chapter  Google Scholar 

  • Ohtsuka T, Saigusa N, Imura Y, Muraoka H, Koizumi H (2016) Biometric-based estimations of net primary production (NPP) in forest ecosystems. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 333–351

    Chapter  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, …, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosci 3:571–583

    Google Scholar 

  • Pons TL (2016) Regulation of leaf traits in canopy gradients. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 143–168

    Chapter  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841

    Article  Google Scholar 

  • Raupach MR (1998) Influences of local feedbacks on land-air exchanges of energy and carbon. Glob Chang Biol 4:477–494

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, …, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439

    Google Scholar 

  • Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen G, Chen JM, …, Xue Y (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob Chang Biol 18:566–584

    Google Scholar 

  • Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30

    Article  Google Scholar 

  • Ruimy A, Dedieu G, Saugier B (1996) TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem Cycles 10:269–285

    Article  CAS  Google Scholar 

  • Running SW, Hunt ERJ (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer JR, Field CB (eds) Scaling Physiological Processes. Academic Press, San Diego, pp 141–158

    Chapter  Google Scholar 

  • Saeki T (1959) Variation of photosynthetic activity with aging of leaves and total photosynthesis in a plant community. Bot Mag Tokyo 72:404–408

    Article  Google Scholar 

  • Saeki T (1960) Interrelationships between leaf amount, light distribution and total photosynthesis in a plant community. Bot Mag Tokyo 73:55–63

    Article  Google Scholar 

  • Sasai T, Ichii K, Yamaguchi Y, Nemani R (2005) Simulating terrestrial carbon fluxes using the new biosphere model BEAMS: biosphere model integrating eco-physiological and mechanistic approaches using satellite data. J Geophys Res 110, G02014. doi:10.1029/2005JG000045

    Google Scholar 

  • Sato H, Ito A, Kohyama T (2007) SEIB–DGVM: a new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecol Model 200:279–307

    Article  Google Scholar 

  • Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I, Barr A, …, Verma SB (2010) A model-data intercomparison of CO2 exchange across North America: Results from the North American carbon program site synthesis. J Geophys Res 115:G00H05. doi:10.1029/2009JG001229

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, …, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, …, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Google Scholar 

  • Spitters CJT, Schapendonk AHCM (1990) Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant Soil 123:193–203

    Article  Google Scholar 

  • Tanaka T (1972) Studies on the light-curves of carbon assimilation of rice plants – the interrelation among the light-curves, the plant type and the maximizing yield of rice. Bul Nat Inst Agri Sci A 19:1–100

    CAS  Google Scholar 

  • Terashima I, Saeki T (1985) A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf. Ann Bot 56:489–499

    CAS  Google Scholar 

  • Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013) Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10:1717–1736

    Google Scholar 

  • van Ittersum MK, Lefferlaar PA, van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:201–234

    Article  Google Scholar 

  • Wang YP, Jarvis PG (1990) Description and validation of an array model-MAESTRO. Agr For Meteor 51:257–280

    Article  Google Scholar 

  • Woodruff DR, McCulloh KA, Meinzer FC (2016) Forest canopy hydraulics. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 187–217

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Niels Anten for valuable comments. This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas (Nos. 21114009 and 21114010), by KAKENHI (Nos. 20677001, 25291095, 20323503 and 25660113) and by CREST, JST, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouki Hikosaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hikosaka, K., Kumagai, T., Ito, A. (2016). Modeling Canopy Photosynthesis. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_9

Download citation

Publish with us

Policies and ethics