Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 42))

Summary

Plants use light as their main source of energy and to gather information about their surroundings. The light environment is monitored through an extensive set of photoreceptors and largely dictates plant development through induction of processes such as germination and flowering, entrainment of the circadian clock and photomorphogenic responses. Plants display remarkable phenotypic plasticity upon perception of changes in the light, ranging from seedling de-etiolation to shade avoidance and phototropic responses in competition for light. Here, we describe photomorphogenic responses and their underlying mechanisms such as they occur in a leaf canopy. This shade avoidance review will largely focus on the model plant species Arabidopsis thaliana as the underlying mechanisms controlling shade avoidance are particularly well elucidated in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA :

Abscisic acid

B:

Blue light

BR:

Brassinosteroid

Cry:

Cryptochrome

ET:

Ethylene

FR:

Far-red light

GA:

Gibberellin

PAR :

Photosynthetically Active Radiation

Phot:

Phototropin

Phy:

Phytochrome

PIF:

Phytochrome -interacting Factor

R:

Red light

R:FR:

Red: Far-red light ratio

UV:

Ultraviolet light

VOC:

Volatile Organic Compound

References

  • Ahmad M, Lin C, Cashmore AR (1995) Mutations throughout an arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J 8:653–658

    Article  PubMed  CAS  Google Scholar 

  • Ang LM, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of arabidopsis development. Mol Cell 1:213–222

    Article  PubMed  CAS  Google Scholar 

  • Athreya VR (1999) Light or presence of host trees: which is more important for the strangler fig? J Trop Ecol 15:589–602

    Article  Google Scholar 

  • Ballaré CL, Scopel AL, Sánchez RA (1987a) Plant photomorphogenesis in canopies, crop growth and yield. HortScience 30:1172–1181

    Google Scholar 

  • Ballaré CL, Sánchez RA, Scopel AL, Casal JJ, Ghersa CM (1987b) Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ 10:551–557

    Google Scholar 

  • Ballaré CL, Sanchez RA, Scopel AL, Ghersa CM (1988) Morphological responses of Datura ferox L. seedlings to the presence of neighbors – their relationships with canopy microclimate. Oecologia 76:288–293

    Article  Google Scholar 

  • Ballaré CL, Scopel AL, Sánchez RA (1990) Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247:329–332

    Article  PubMed  Google Scholar 

  • Ballaré CL, Scopel AL, Sánchez RA (1991) Photocontrol of stem elongation in plant neighbourhoods: effects of photon fluence rate under natural conditions of radiation. Plant Cell Environ 14:57–65

    Article  Google Scholar 

  • Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A (2007) The signaling state of arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282:14916–14922

    Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  PubMed  CAS  Google Scholar 

  • Bittebiere A, Renaud N, Clement B, Mony C (2012) Morphological response to competition for light in the clonal Trifolium repens (fabaceae). Am J Bot 99:646–654

    Article  PubMed  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam S, Murphy AS (2004) Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134:28–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bleecker AB (1999) Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4:269–274

    Article  PubMed  Google Scholar 

  • Boccalandro HE, De Simone SN, Bergmann-Honsberger A, Schepens I, Fankhauser C, Casal JJ (2008) Phytochrome kinase substrate1 regulates root phototropism and gravitropism. Plant Physiol 146:108–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, …, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    Google Scholar 

  • Carabelli M, Sessa G, Baima S, Morelli G, Ruberti I (1993) The arabidopsis athb-2 and −4 genes are strongly induced by far-red-rich light. Plant J 4:469–479

    Article  PubMed  CAS  Google Scholar 

  • Carabelli M, Morelli G, Whitelam G, Ruberti I (1996) Twilight-zone and canopy shade induction of the athb-2 homeobox gene in green plants. Proc Natl Acad Sci U S A 93:3530–3535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Casal JJ (2012) Shade avoidance. Arabidopsis Book 10:e0157

    Article  PubMed  PubMed Central  Google Scholar 

  • Casal JJ, Smith H (1989) The function, action and adaptive significance of phytochrome in light-grown plants. Plant Cell Environ 12:855–862

    Article  Google Scholar 

  • Casal JJ, Ballaré CL, Tourn M, Sánchez RA (1994) Anatomy, growth and survival of a long-hypocotyl mutant of cucumis sativus deficient in phytochrome B. Ann Bot 73:569–575

    Article  CAS  Google Scholar 

  • Chang C, Stadler R (2001) Ethylene hormone receptor action in arabidopsis. Bioessays 23:619–627

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Chitwood DH, Headland LR, Filiault DL, Kumar R, Jimenez-Gomez JM, Schrager AV, Park DS, …, Maloof JN (2012) Native environment modulates leaf size and response to simulated foliar shade across wild tomato species. PLoS One 7:e29570

    Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Clough RC, Lohman KN, Vierstra RD (1997) Sequences within both the N- and C-terminal domains of phytochrome are required for Pfr-specific degradation. Plant Physiol 114:1476

    Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Carbonnel M, Davis P, Roelfsema MRG, Inoue S, Schepens I, Lariguet P, Geisler M, …, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152:1391–1405

    Google Scholar 

  • De Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, …, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    Google Scholar 

  • de Wit M, Kegge W, Evers JB, Vergeer-van Eijk MH, Gankema P, Voesenek LACJ, Pierik R (2012) Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proc Natl Acad Sci U S A 109:14705–14710

    Article  PubMed  PubMed Central  Google Scholar 

  • Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12:69–74

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Rood SB, Somers DE, Quail PH, Whitelam GC (1992) Photophysiology of the elongated internode (ein) mutant of Brassica rapa: ein mutant lacks a detectable phytochrome B-like polypeptide. Plant Physiol 100:1442–1447

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in arabidopsis. Plant Physiol 133:1617–1629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dill A, Thomas SG, Hu J, Steber CM, Sun T (2004) The arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392–1405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ding Z, Galvan-Ampudia CS, Demarsy E, Langowski L, Kleine-Vehn J, Fan Y, Morita MT, …, Friml (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–453

    Google Scholar 

  • Djakovic-Petrovic T, de Wit M, Voesenek LACJ, Pierik R (2007) DELLA protein function in growth responses to canopy signals. Plant J 51:117–126

    Article  PubMed  CAS  Google Scholar 

  • Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10:51–54

    Article  PubMed  CAS  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14:2377–2391

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, …, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475479

    Google Scholar 

  • Finlayson SA, Lee IJ, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in arabidopsis. Plant Physiol 152:1914–1927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  PubMed  CAS  Google Scholar 

  • Folta KM (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol 135:1407–1416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36:203–214

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    Article  PubMed  CAS  Google Scholar 

  • Friml J, WiÅ›niewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP (2004) The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16:1406–1418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Furutani M, Sakamoto N, Yoshida S, Kajiwara T, Robert HS, Friml J, Tasaka M (2011) Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers. Development 138:2069–2078

    Article  PubMed  CAS  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade – a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Goldberg DE, Barton AM (1992) Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. Am Nat 139:771–801

    Article  Google Scholar 

  • Gommers CMM, Visser EJW, St. Onge KR, Voesenek LACJ, Pierik R (2013) Shade tolerance: when growing tall is not an option. Trends Plant Sci 18:65–71

    Article  PubMed  CAS  Google Scholar 

  • Goudriaan J (2016) Light distribution. In: Hikosaka K, Niinemets Ãœ, Anten N (eds) Canopy photosynthesis: from basics to applications. Springer, Berlin, pp 3–22

    Google Scholar 

  • Haga K, Takano M, Neumann R, Iino M (2005) The rice coleoptile phototropism1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17:103–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hall BP, Shakeel SN, Schaller GE (2007) Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul 26:118–130

    Article  CAS  Google Scholar 

  • Halliday K, Salter M, Thingnaes E, Whitelam G (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33:875–885

    Article  PubMed  CAS  Google Scholar 

  • Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638

    Article  PubMed  CAS  Google Scholar 

  • Hennig L, Buche C, Eichenberg K, Schafer E (1999) Dynamic properties of endogenous phytochrome A in Arabidopsis seedlings. Plant Physiol 121:571–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hisamatsu T, King RW, Helliwell CA, Koshioka M (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol 138:1106–1116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holmes MG, Smith H (1975) The function of phytochrome in plants growing in the natural environment. Nature 254:512–514

    Article  CAS  Google Scholar 

  • Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C (2009) Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J 28:3893–3902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huq E, Al-Sady B, Quail PH (2003) Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J 35:660–664

    Article  PubMed  CAS  Google Scholar 

  • Janoudi A, Konjević R, Whitelam G, Gordon W, Poff KL (1997) Both phytochrome A and phytochrome B are required for the normal expression of phototropism in Arabidopsis thaliana seedlings. Physiol Plant 101:278–282

    Article  CAS  Google Scholar 

  • Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoresponses of light-grown phya mutants of Arabidopsis – phytochrome-a is required for the perception of daylength extensions. Plant Physiol 105:141–149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kegge W, Pierik R (2010) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 15:126–132

    Article  PubMed  CAS  Google Scholar 

  • Kegge W, Weldegergis BT, Soler R, Vergeer – van Eijk M, Dicke M, Voesenek LACJ, Pierik R (2013) Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. New Phytol 200:861–874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in arabidopsis via partially independent hormonal cascades. Plant J 67:195–207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keuskamp DH, Pollmann S, Voesenek LACJ, Peeters AJM, Pierik R (2010) Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci U S A 107:22740–22744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keuskamp DH, Sasidharan R, Vos I, Peeters AJM, Voesenek LACJ, Pierik R (2011) Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in arabidopsis seedlings. Plant J 67:208–217

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Henriques R, Sakakibara H, Chua NH (2007) Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 19:2516–2530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schäfer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–1456

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419–428

    Article  Google Scholar 

  • Kitajima K, Poorter L (2010) Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186:708–721

    Article  PubMed  Google Scholar 

  • Kong SG, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006) Blue light-induced association of phototropin 2 with the golgi apparatus. Plant J 45:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Kozuka T, Horiguchi G, Kim GT, Ohgishi M, Sakai T, Tsukaya H (2005) The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar. Plant Cell Physiol 46:213–223

    Article  PubMed  CAS  Google Scholar 

  • Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, De Carbonnel M, …, Fankhauser C (2006) Phytochrome kinase substrate 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci USA 103:10134–10139

    Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, …, Chory J (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785790

    Google Scholar 

  • Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A 95:2686–2690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7:473–485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X (2012) Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78:289–300

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Juez E, Kobayashi M, Sakurai A, Kamiya Y, Kendrick RE (1995) Phytochrome, gibberellins, and hypocotyl growth. A study using the cucumber (Cucumis sativus L.) long hypocotyl mutant. Plant Physiol 107:131–140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  PubMed  CAS  Google Scholar 

  • Losi A, Gartner W (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol 63:49–72

    Article  PubMed  CAS  Google Scholar 

  • Meils A, Harvey G (1981) Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Biochim Biophys Acta 637:138–145

    Article  Google Scholar 

  • Millenaar FF, Van Zanten M, Cox MCH, Pierik R, Voesenek LACJ, Peeters AJM (2009) Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation. New Phytol 184:141–152

    Article  PubMed  CAS  Google Scholar 

  • Morelli G, Ruberti I (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol 122:621–626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci U S A 106:4935–4940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morgan DC, Smith H (1978) The relationship between phytochrome-photoequilibrium and development in light grown Chenopodium album L. Planta 142:187–193

    Article  PubMed  CAS  Google Scholar 

  • Morgan DC, O’Brien T, Smith H (1980) Rapid photomodulation of stem extension in light-grown Sinapis alba L. – studies on kinetics, site of perception and photoreceptor. Planta 150:95–101

    Article  PubMed  CAS  Google Scholar 

  • Motchoulski A, Liscum E (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286:961–964

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, …, Yamaguchi I (2006) Identification and characterization of arabidopsis gibberellin receptors. Plant J 46:880–889

    Google Scholar 

  • Osterlund MT, Hardtke CS, Ning W, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Quail PH, Hangarter RP (1996) Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol 110:155–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peeters AJM, Cox MCH, Benschop JJ, Vreeburg RAM, Bou J, Voesenek LACJ (2002) Submergence research using Rumex palustris as a model; looking back and going forward. J Exp Bot 53:391–398

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Harberd NP (1997) Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiol 113:1051–1058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pierik R, Testerink C (2014) The art of being flexible: how to escape from shade, salt and drought. Plant Physiol 166:5–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierik R, Visser EJW, De Kroon H, Voesenek LACJ (2003) Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ 26:1229–1234

    Article  CAS  Google Scholar 

  • Pierik R, Whitelam GC, Voesenek LACJ, De Kroon H, Visser EJW (2004) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling. Plant J 38:310–319

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Djakovic-Petrovic T, Keuskamp DH, de Wit M, Voesenek LACJ (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant Physiol 149:1701–1712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pierik R, de Wit M, Voesenek LACJ (2011) Growth-mediated stress escape: convergence of signal transduction pathways activated upon exposure to two different environmental stresses. New Phytol 189:122–134

    Article  PubMed  CAS  Google Scholar 

  • Pigliucci M, Schmitt J (2004) Phenotypic plasticity in response to foliar and neutral shade in gibberellin mutants of Arabidopsis thaliana. Evol Ecol Res 6:243–259

    Google Scholar 

  • Polko JK, van Zanten M, van Rooij JA, Maree AFM, Voesenek LACJ, Peeters AJM, Pierik R (2012) Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytol 193:339–348

    Article  PubMed  CAS  Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Reddy SK, Holalu SV, Casal JJ, Finlayson S (2013) Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. Plant Physiol 163:1047–1058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome-a and phytochrome-B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104:1139–1149

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reed JW, Foster KR, Morgan PW, Chory J (1996) Phytochrome B affects responsiveness to gibberellins in arabidopsis. Plant Physiol 112:337–342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rockwell NC, Su Y, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S, Rodríguez-Concepción M, Martínez-García JF (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rousseaux MC, Ballaré CL, Jordan ET, Vierstra RD (1997) Directed overexpression of PHYA locally suppresses stem elongation and leaf senescence responses to far-red radiation. Plant Cell Environ 20:1551–1558

    Article  CAS  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98:6969–6974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakamoto K, Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J 10:859–868

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426:680–683

    Article  PubMed  CAS  Google Scholar 

  • Sasidharan R, Chinnappa CC, Voesenek LACJ, Pierik R (2008) The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiol 148:1557–1569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sasidharan R, Chinnappa CC, Staal M, Elzenga JTM, Yokoyama R, Nishitani K, Voesenek LACJ, Pierik R (2010) Light quality-mediated petiole elongation in arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases. Plant Physiol 154:978–990

    Google Scholar 

  • Schmitt J, McCormac AC, Smith H (1995) A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am Nat 146:937–953

    Article  Google Scholar 

  • Seo HS, Watanabe E, Tokutomi S, Nagatani A, Chua NH (2004) Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 18:617–622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, …, Ruberti I (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in arabidopsis. Genes Dev 19:2811–2815

    Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Smith H, Holmes MG (1977) The function of phytochrome in the natural environment? III. Measurement and calculation of phytochrome photoequilibria. Photochem Photobiol 25:547–550

    Article  CAS  Google Scholar 

  • Somers DE, Sharrock RA, Tepperman JM, Quail PH (1991) The hy3 long hypocotyl mutant of arabidopsis is deficient in phytochrome B. Plant Cell 3:1263–1274

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G, Ruberti I (1999) Shade avoidance responses are mediated by the ATHB-2 HD-zip protein, a negative regulator of gene expression. Development 126:4235–4245

    Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, Schlereth A, …, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Google Scholar 

  • Stowe-Evans EL, Harper RM, Motchoulski AV, Liscum E (1998) NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol 118:1265–1275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Su H, Abernathy SD, White RH, Finlayson SA (2011) Photosynthetic photon flux density and phytochrome B interact to regulate branching in Arabidopsis. Plant Cell Environ 34:1986–1998

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, …, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) Massugu2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393

    Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Bio 7:847–859

    Article  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, …, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Google Scholar 

  • Valladares F, Niinemets Ãœ (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257

    Article  Google Scholar 

  • Vandenbussche F, Pierik R, Millenaar FF, Voesenek LACJ, Van Der Straeten D (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468

    Article  PubMed  CAS  Google Scholar 

  • Voesenek LACJ, Pierik R (2008) Plant science: plant stress profiles. Science 320:880–881

    Article  PubMed  CAS  Google Scholar 

  • Voesenek LACJ, Jackson MB, Toebes AHW, Huibers W, Vriezen WH, Colmer TD (2003) De-submergence-induced ethylene production in Rumex palustris: regulation and ecophysiological significance. Plant J 33:341–352

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158

    Article  PubMed  CAS  Google Scholar 

  • Weiner J (1985) Size hierarchies in experimental populations of annual plants. Ecology 66:743–752

    Article  Google Scholar 

  • Whippo CW, Hangarter RP (2004) Phytochrome modulation of blue-light-induced phototropism. Plant Cell Environ 27:1223–1228

    Article  CAS  Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, …, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523

    Google Scholar 

  • Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A (1999) Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145:437–445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang HQ, Tang RH, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–2587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang T, Maruhnich SA, Folta KM (2011) Green light induces shade avoidance symptoms. Plant Physiol 157:1528–1536

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Pierik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Wit, M., Pierik, R. (2016). Photomorphogenesis and Photoreceptors. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_6

Download citation

Publish with us

Policies and ethics