Skip to main content

Modeling Leaf Gas Exchange

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 42))

Summary

Leaves are photosynthetic organs that absorb light and convert the photon energy of light to chemical energy for use in CO2 assimilation. Here we review how CO2 assimilation rates vary, depending on environmental factors and among leaves. Net CO2 assimilation is a balance between the carboxylation of ribulose 1,5-bisphosphate (RuBP) catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the release of CO2 by photorespiration and mitochondrial respiration. The steady-state biochemical model of CO2 assimilation considers photosynthetic metabolism as a composite of two processes, namely, RuBP carboxylation and regeneration. The former, modeled based on the Rubisco kinetics, is limited mainly by CO2 supply, whereas the latter is assumed to be limited by the rate of photon absorption at low light and by its use in electron transport at high light. CO2 concentration at the assimilation sites in chloroplasts depends on the stomatal and mesophyll conductances for CO2 diffusion. Both these conductances are sensitive to environmental variables, but no mechanistic models of environmental responses for these conductances are available. Various empirical models have been developed and combined with the biochemical photosynthesis model allowing for expression of CO2 assimilation rates as a function of environmental variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Net CO2 assimilation rate

A c :

RuBP -saturated A

A j :

RuBP -limited A

A max :

Maximum A (photosynthetic capacity)

A t :

A limited by TP use

ABA :

Abscisic acid

AOX :

Cyanide-resistant alternative oxidase

B n :

Net anabolic NADH supply

C a C c , C f and C i :

CO2 partial pressures at air, chloroplast , leaf surface and intercellular space respectively

c p :

Heat capacity of air

CP:

Cytochrome pathway

D :

Leaf-to-air vapor pressure deficit

D 0 :

Fitted parameter for D in Eq. 3.29

d min :

Minimum ion diffusion rate in modeling stomatal conductance in Eq. 3.36

E :

Evapotranspiration rate

E a :

Activation energy

E o :

Activation energy of the respiratory pathway

E oref :

Activation energy at the reference temperature

f i and f ref :

Value of f at T = ∞ and the reference temperature

f m :

Fraction of photorespiratory NADH that remains in mitochondria

F v /F m :

Maximum dark-adapted quantum yield for photosystem I I

f Ψv :

Sensitivity of stomata to leaf water potential

FADH2 :

Flavin adenine dinucleotide

g :

Total diffusion conductance for CO2 from air to chloroplasts

g 0 and g 1 :

Fitted parameters for stomatal conductance

g b g m , and g s :

Conductances for CO2 diffusion across boundary layer, mesophyll and stomata

g bh :

Leaf boundary layer for heat conductance

g c :

Leaf CO2 conductance including stomatal and boundary layer conductance s

g wc :

Leaf water vapor conductance including stomatal and boundary layer conductance s

H :

Sensible heat flux

H d :

Energy of deactivation

h r :

Relative humidity at the leaf surface

HT:

High temperature

I :

Photosynthetically active photon flux density (irradiance )

J :

Electron transport rate

J max :

Maximum J

K c and K o :

Michaelis–Menten constant s for carboxylation and oxygenation

k cat :

Rubisco turnover rate (rate of CO2 fixation per Rubisco active site)

K tot :

Hydraulic conductance for the whole plant

LMA:

Leaf mass per area

LT:

Low temperature

m :

Empirical constant in Eq. 3.32

M :

Plant dry mass

MDH:

Malate dehydrogenase

NADH m :

Fraction of photorespiratory NADH that remains in mitochondria

NDs:

Type II NAD(P)H dehydrogenases

O :

O2 partial pressure in chloroplasts

OAA:

Oxaloacetic acid

OPPP:

Oxidative pentose phosphate pathway

P g and P e :

Pressure potentials of the guard cells and the bulk epidermal cells

P p :

Export rate of triose phosphate

PDH:

Pyruvate dehydrogenase complex

PEPCase:

Phosphoenolpyruvate carboxylase

PGA :

3-phosphoglycerate

PQ:

Plastoquinone

PSII :

Photosystem I I

Q 10 :

Ratio of the process rate at a reference temperature + 10 K to the rate at the reference temperature

r :

Total resistance to CO2 diffusion from air to chloroplasts

r b , r m , and r s :

Resistances to CO2 diffusion at boundary layer, mesophyll, and stomata

r wb and r ws :

Resistances to water vapor at boundary layer and stomata

R :

Universal gas constant

R C :

Rate of non-photorespiratory CO2 release

R d :

Respiration rate in the light

R g :

Growth respiration coefficient

R m :

Maintenance respiration rate

R n :

Respiration rate in the dark

R N :

Net radiation

R O :

Rate of non-photorespiratory O2 consumption

R PR :

Photorespiratory rate

R ref :

Respiration rate at the reference temperature

R min :

Minimum R d

RGR :

Relative growth rate

Rubisco :

Ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP :

Ribulose 1,5-bisphosphate

S c :

Chloroplast surface area

S c/o :

Relative specificity of Rubisco (specificity factor)

S V :

Sensitivity parameter in Eq. 3.38

SA and SD:

Starch-accumulating and deficient species

TP:

Triose-phosphate

T l and T a :

Leaf and air temperatures

T k :

Temperature in Kelvin

T opt :

Optimal temperature

T ref :

Reference temperature

T sky :

Temperature of the sky

UCP:

Uncoupling protein

UQ:

Ubiquinone

V by :

Rate of carbon flow to CO2 as a by-product of flows into anabolic products

V c :

Rate of carboxylation

V cat :

Rate of CO2 release due to catabolic substrate oxidation

V cmax :

Maximum V c

V o :

Rate of oxygenation

V opc :

CO2 release rate from substrate oxidation via cytosolic OPPP

V omax :

Maximum V o

V opp :

CO2 release rate from substrate oxidation via chloroplastic OPPP

V px :

Photo-reductant export rate

VPD :

Vapor pressure deficit

W a and W i :

Water vapor pressure s in air and intercellular air space

α:

Leaf absorptance

α S and α IR :

Shortwave and infrared absorptance s

β a :

Empirical constant in Eq. 3.34

γ and ξ:

Empirical constants in Eq. 3.36

δ :

Coefficient to describe dynamic response of E o to temperature

δ w :

Thickness of mesophyll cell wall

ΔS :

Entropy term

ε:

Leaf long-wave emissivity

φ :

Ratio of RuBP oxygenation to carboxylation rates

ϕ x :

Initial slopes of the light response curve

Γ:

CO2 compensation point of CO2 assimilation

Γ*:

CO2 compensation point of CO2 assimilation in the absence of R d

λ :

Heat of vaporization

λ s :

Marginal water cost of carbon gain

π a :

Osmotic potential of apoplastic water near the stomatal guard cells

π e :

Osmotic potential of epidermis cells

π g :

Osmotic potential in the guard cells

θ x :

Curvature factors in Eqs. 3.11, 3.12 and 3.16

ρ :

Shortwave reflectance of the surroundings

σ :

Stefan–Boltzmann constant

τ :

Scale R o to a daily rate

τ a :

ATP concentration in the guard cells

υ :

Slope of light response of R d

χ :

Hydraulic conductance between the bulk epidermis and stomatal guard cells

ψ e :

Water potential of epidermis cell

ψ g :

Water potential of guard cell

ψref :

Reference potential

ψ s :

Soil water potential

ψ V :

Bulk leaf water potential

References

  • Akita R, Kamiyama C, Hikosaka K (2012) Polygonum sachalinense alters the balance between capacities of regeneration and carboxylation of ribulose-1,5-bisphosphate in response to growth CO2 increment but not the nitrogen allocation within the photosynthetic apparatus. Physiol Plant 146:404–412

    Article  PubMed  CAS  Google Scholar 

  • Amthor JS (1989) Respiration and Crop Productivity. Springer, New York

    Book  Google Scholar 

  • Amthor JS (1994) Respiration and carbon assimilate use. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and Determination of Crop Yield. American Society of Agronomy, Madison, pp 221–250

    Google Scholar 

  • Anten NPR (2016) Optimization and game theory in canopy models. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 355–377

    Chapter  Google Scholar 

  • Anten NPR, Schieving F, Werger MJA (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia 101:504–513

    Article  Google Scholar 

  • Aphalo PJ, Jarvis PG (1991) Do stomata respond to relative humidity? Plant Cell Environ 14:127–132

    Article  Google Scholar 

  • Araya T, Noguchi K, Terashima I (2008) Manipulation of light and CO2 environments of the primary leaves of bean (Phaseolus vulgaris L.) affects photosynthesis in both the primary and the first trifoliate leaves: involvement of systemic regulation. Plant Cell Environ 31:50–61

    PubMed  CAS  Google Scholar 

  • Armond PA, Schreiber U, Björkman O (1978) Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. II. Light-harvesting efficiency and electron transport. Plant Physiol 61:411–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II – inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  PubMed  CAS  Google Scholar 

  • Atkin OK, Evans JR, Siebke K (1998) Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. Aust J Plant Physiol 25:437–443

    Article  Google Scholar 

  • Atkin OK, Millar AH, Gardeström P, Day DA (2000a) Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: Physiology and Metabolism. Kluwer Academic Publishers, Dordrecht, pp 153–175

    Chapter  Google Scholar 

  • Atkin OK, Evans JR, Ball MC, Lambers H, Pons TL (2000b) Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance. Plant Physiol 122:915–923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    Article  Google Scholar 

  • Atkin OK, Scheurwater I, Pons TL (2006) High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Global Chang Biol 12:500–515

    Article  Google Scholar 

  • Ayub G, Smith RA, Tissue DT, Atkin OK (2011) Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytol 190:1003–1018

    Article  PubMed  Google Scholar 

  • Badger MR, Björkman O, Armond PA (1982) An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in the desert evergreen Nerium oleander L. Plant Cell Environ 5:85–99

    CAS  Google Scholar 

  • Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1, 5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Institute Year Book 76:355–361

    Google Scholar 

  • Baldocchi D (1994) An analytical solution for coupled leaf photosynthesis and stomatal conductance models. Tree Physiol 14:1069–1079

    Article  PubMed  Google Scholar 

  • Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ 18:1157–1173

    Article  Google Scholar 

  • Ball JT (1987) Calculations related to gas exchange. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal Function. Stanford University Press, Stanford, pp 445–476

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins I (ed) Progress in Photosynthesis Research. Martinus Nijhoff, La Hague, pp 221–224

    Chapter  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, Von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Berry JA, Farquhar GD (1978) The CO2 concentration function of C4 photosynthesis: a biochemical model. In: Hall D, Coombs J, Goodwin T (eds) Proceedings of the 4th International Congress on Photosynthesis. Biochemical Society, London, pp 119–131

    Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Boote KJ, Loomis RS (1991) The prediction of canopy assimilation. In: Boote KJ, Loomis RS (eds) Modelling Crop Photosynthesis – From Biochemistry to Canopy. CSSA, Madison, pp 109–140

    Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165:397–406

    Article  PubMed  CAS  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–292

    Article  PubMed  CAS  Google Scholar 

  • Buckley TN, Adams MA (2011) An analytical model of non-photorespiratory CO2 release in the light and dark in leaves of C3 species based on stoichiometric flux balance. Plant Cell Environ 34:89–112

    Article  PubMed  CAS  Google Scholar 

  • Buckley TN, Mott KA (2013) Modeling stomatal conductance in response to environmental Factor. Plant Cell Environ 36:1691–1699

    Article  PubMed  Google Scholar 

  • Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785

    Article  CAS  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agr Forest Meteorol 54:107–136

    Article  Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4:117–228

    Article  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomata1 function in relation to leaf metabolism and environment. In: Jennings DH (ed) Integration of Activity in the Higher Plant. Cambridge University Press, Cambridge, pp 471–505

    Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33:1419–1438

    PubMed  Google Scholar 

  • Dewer RC (2002) The Ball-Berry-Leuning and Tardieu-Daview stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ 25:1383–1398

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistance along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21:475–495

    Article  CAS  Google Scholar 

  • Falge E, Graber W, Siegwolf R, Tenhunen JD (1996) A model of the gas exchange response of Picea abies to habitat conditions. Trees 10:277–287

    Google Scholar 

  • Farquhar GD (1988) Models relating subcellular effects of temperature to whole plant responses. Symp Soc Exp Biol 42:395

    PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environment. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of Plant Physiology, vol 12B, New Series. Springer, Berlin, pp 549–587

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125:42–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finnegan PM, Soole KL, Umbach AL (2004) Alternative mitochondrial electron transport proteins in higher plants. In: Day DA, Millar AH, Whelan J (eds) Plant Mitochondria: From Genome to Function. Kluwer Academic Publishers, Dordrecht, pp 163–230

    Chapter  Google Scholar 

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006a) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Marínez-Cañellas MH (2006b) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, …, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84

    Google Scholar 

  • Flexas J, Niinemets Ü, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Douthe C, …, Medrano H (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research 117:45–59

    Google Scholar 

  • Florez-Sarasa I, Flexas J, Rasmusson AG, Umbach AL, Siedow JN, Ribas-Carbo M (2011) In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions. Plant Cell Environ 34:1373–1383

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsen EK (1948) Effects of different chlorophyll concentrations on photosynthesis in foliage leaves. Physiol Plant 1:5–37

    Article  CAS  Google Scholar 

  • Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, …, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579

    Google Scholar 

  • Gross LJ, Kirschbaum MUF, Pearcy RW (1991) A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and RuBisCO activation. Plant Cell Environ 14:881–893

    Article  CAS  Google Scholar 

  • Gutschick VP (2016) Leaf energy balance: basics, and modeling from leaves to Canopies. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 23–58

    Chapter  Google Scholar 

  • Han Q, Kawasaki T, Nakano T, Chiba Y (2004) Spatial and seasonal variability of temperature responses of biochemical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiol 24:737–744

    Article  PubMed  CAS  Google Scholar 

  • Harley PC, Baldocchi DD (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parameterization. Plant Cell Environ 18:1146–1156

    Article  Google Scholar 

  • Harley PC, Tenhunen JD (1991) Modelling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modelling Crop Photosynthesis – From Biochemistry to Canopy. CSSA, Madison, pp 17–39

    Google Scholar 

  • Harley PC, Tenhunen JD, Lange OL (1986) Use of an analytical model to study limitations on net photosynthesis in Arbutus unedo under field conditions. Oecologia 70:393–401

    Article  Google Scholar 

  • Haupt-Herting S, Klug K, Fock HP (2001) A new approach to measure gross CO2 fluxes in leaves. Gross CO2 assimilation, photorespiration, and mitochondrial respiration in the light in tomato under drought stress. Plant Physiol 126:389–396

    Article  Google Scholar 

  • Hesketh JD, Baker DN, Duncan WG (1971) Simulation of growth and yield in cotton: respiration and the carbon balance. Crop Sci 11:394–399

    Article  Google Scholar 

  • Hikosaka K (1997) Modelling optimal temperature acclimation of the photosynthetic apparatus in C3 plants with respect to nitrogen use. Ann Bot 80:721–730

    Article  CAS  Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494

    Article  PubMed  Google Scholar 

  • Hikosaka K (2010) Mechanisms underlying interspecific variation in photosynthetic capacity across wild plant species. Plant Biotech 27:223–229

    Article  CAS  Google Scholar 

  • Hikosaka K, Shigeno A (2009) The role of Rubisco and cell walls for the interspecific variation in photosynthetic capacity. Oecologia 160:443–451

    Article  PubMed  Google Scholar 

  • Hikosaka K, Terashima I (1995) A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ 18:605–618

    Article  CAS  Google Scholar 

  • Hikosaka K, Terashima I (1996) Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Funct Ecol 10:335–343

    Article  Google Scholar 

  • Hikosaka K, Hanba YT, Hirose T, Terashima I (1998) Photosynthetic nitrogen-use efficiency in woody and herbaceous plants. Funct Ecol 12:896–905

    Article  Google Scholar 

  • Hikosaka K, Murakami A, Hirose T (1999) Balancing carboxylation and regeneration of ribulose bisphosphate in leaf photosynthesis: temperature acclimation in an evergreen tree, Quercus myrsinaefolia. Plant Cell Environ 22:841–849

    Article  CAS  Google Scholar 

  • Hikosaka K, Kato MC, Hirose T (2004) Photosynthetic rates and partitioning of absorbed light energy in photoinhibited leaves. Physiol Plant 121:699–708

    Article  CAS  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Nabeshima E, Hiura T (2007) Seasonal changes in temperature response of photosynthesis in canopy leaves of Quercus crispula in a cool-temperate forest. Tree Physiol 27:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Kumagai T, Ito A (2016) Modeling canopy photosynthesis. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 239–268

    Chapter  Google Scholar 

  • Hirose T, Werger MJA (1987) Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of Solidago altissima stand. Physiol Plant 70:215–222

    Article  CAS  Google Scholar 

  • Hourton-Cabassa C, Matos AR, Zachowski A, Moreau F (2004) The plant uncoupling protein homologues: a new family of energy dissipating proteins in plant mitochondria. Plant Physiol Biochem 42:283–290

    Article  PubMed  CAS  Google Scholar 

  • Hurry V, Igamberdiev AU, Keerberg O, Pärnik T, Atkin OK, Zaragoza-Castells J, Gardeström P (2005) Respiration in photosynthetic cells: gas exchange components, interactions with photorespiration and the operation of mitochondria in the light. In: Lambers H, Ribas-Carbo M (eds) Plant Respiration: From Cell to Ecosystem. Springer, Berlin, pp 43–61

    Chapter  Google Scholar 

  • Hüve K, Bichele I, Tobias M, Niinemets Ü (2006) Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential. Plant Cell Environ 29:212–228

    Article  PubMed  CAS  Google Scholar 

  • Hüve K, Bichele I, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126

    Article  PubMed  CAS  Google Scholar 

  • Hüve K, Bichele I, Ivanova H, Keerberg O, Pärnik T, Rasulov B, Tobias M, Niinemets Ü (2012) Temperature responses of dark respiration in relation to leaf sugar concentration. Physiol Plant 144:320–334

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa C, Hatanaka T, Misoo S, Fukayama H (2009) Screening of high k cat Rubisco among Poaceae for improvement of photosynthetic CO2 assimilation in rice. Plant Prot Sci 12:345–350

    Article  CAS  Google Scholar 

  • Ishikawa K, Onoda Y, Hikosaka K (2007) Intraspecific variation in temperature dependence of gas exchange characteristics of Plantago asiatica ecotypes from different temperature regimes. New Phytol 176:356–364

    Article  PubMed  CAS  Google Scholar 

  • Johnson F, Erying H, Williams R (1942) The nature of enzyme inhibitions in bacterial luminescence: sulphanilamide, urethane, temperature, pressure. J Cell Comp Physiol 20:247–268

    Article  CAS  Google Scholar 

  • Johnson IR (1983) Nitrate uptake and respiration in roots and shoots: a model. Physiol Plant 58:145–147

    Article  CAS  Google Scholar 

  • Jones HG (1992) Plants and Microclimate, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jordan DB, Ögren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  PubMed  CAS  Google Scholar 

  • Kariya K, Tsunoda S (1972) Relationship of chlorophyll content, chloroplast area index and leaf photosynthesis rate in Brassica. Tohoku J Agr Res 23:1–14

    Article  CAS  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190

    Article  PubMed  CAS  Google Scholar 

  • Katul G, Manzoni S, Palmroth S, Oren R (2010) A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann Bot 105:431–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Yokoi Y, Hogetsu K (1978) Quantitative relationships between growth and respiration. II. Evaluation of constructive and maintenance respiration in growing Helianthus tuberosus leaves. Bot Mag Tokyo 91:43–56

    Article  Google Scholar 

  • Kirschbaum MUF, Farquhar GD (1984) Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Aust J Plant Physiol 11:519–538

    Article  Google Scholar 

  • Kirschbaum MUF, Farquhar GD (1987) Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora. Plant Physiol 83:1032–1036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kok B (1948) A critical consideration of the quantum yield of Chlorella-photosynthesis. Enzymology 13:1–56

    CAS  Google Scholar 

  • Kruse J, Adams MA (2008) Three parameters comprehensively describe the temperature response of respiratory oxygen reduction. Plant Cell Environ 31:954–967

    Article  PubMed  CAS  Google Scholar 

  • Kruse J, Rennenberg H, Adams MA (2011) Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol 189:659–677

    Article  PubMed  CAS  Google Scholar 

  • Kruse J, Turnbull TL, Adams MA (2012) Disentangling respiratory acclimation and adaptation to growth temperature by Eucalyptus. New Phytol 195:149–163

    Article  PubMed  CAS  Google Scholar 

  • Laisk AH (1977) Kinetics of Photosynthesis and Photorespiration of C3-Plants. Nauka, Moscow

    Google Scholar 

  • Laisk A, Edwards GE (2002) A mathematical model of C4 photosynthesis: The mechanism of concentrating CO2 in NADP-malic enzyme type species. Photosynth Res 66:199–224

    Google Scholar 

  • Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Ribulose-1,5-bisphosphate carboxylase/oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiol 110:903–912

    PubMed  PubMed Central  CAS  Google Scholar 

  • Laisk A, Oja V, Rahi M (1970) Diffusion resistance of leaves in connection with their anatomy. Soviet Plant Physiol 17:31–38 (translated from Fiziologiya Rastenii 17: 40–48)

    Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant Physiological Ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Leuning R (2002) Temperature dependence of two parameters in a photosynthesis model. Plant Cell Environ 25:1205–1210

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Long SP, Postl WF, Bolhár-Nordenkampf HR (1993) Quantum yields for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189:226–234

    Article  CAS  Google Scholar 

  • Loreto F, Celikova V, Di Marco G (2001) Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maze leaves. Aust J Plant Physiol 28:1103–1108

    Google Scholar 

  • Makino A, Nakano H, Mae T (1994) Responses of ribulose-1,5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis. Plant Physiol 105:173–179

    PubMed  PubMed Central  CAS  Google Scholar 

  • Makino A, Shimada T, Takumi S, Kaneko K, Matsuoka M, Shimamoto K, Nakano H, …, Yamamoto N (1997) Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant Physiol 114:483–491

    Google Scholar 

  • Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A (2011) Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct Ecol 5:456–467

    Article  Google Scholar 

  • Matsumoto Y, Oikawa S, Yasumura Y, Hirose T, Hikosaka K (2008) Reproductive yield of individuals competing for light in a dense stand of Xanthium canadense. Oecologia 157:185–195

    Article  PubMed  Google Scholar 

  • McCree KJ (1970) An equation for the rate of respiration of white clover plants grown under controlled conditions. In: Setlik I (ed) Prediction and Measurement of Photosynthetic Productivity. Pudoc, Wageningen, pp 221–229

    Google Scholar 

  • McMurtrie RE, Wang YP (1993) Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures. Plant Cell Environ 16:1–13

    Article  CAS  Google Scholar 

  • Medlyn BR, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, …, Loustau D (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, …, Wingate L (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Chang Biol 17:2134–2144

    Google Scholar 

  • Mitchell RAC, Barber J (1986) Adaptation of photosynthetic electron-transport rate to growth temperature in pea. Planta 169:429–436

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa S-I, Terashima I (2001) Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate. Plant Cell Environ 24:279–291

    Article  CAS  Google Scholar 

  • Mott KA, Parkhurst DF (1991) Stomatal responses to humidity in air and helox. Plant Cell Environ 14:509–515

    Article  Google Scholar 

  • Niinemets Ü (2016) Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy Photosynthesis: From Basics to Applications. Springer, Berlin, pp 101–141

    Chapter  Google Scholar 

  • Niinemets Ü, Keenan TF (2014) Photosynthetic responses to stress in Mediterranean evergreens: mechanisms and models. Environ Exp Bot 103:24–41

    Article  CAS  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009a) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009b) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Flexas J, Peñuelas J (2011) Evergreens favored by higher responsiveness to increased CO2. Trend Ecol Evol 26:136–142

    Article  Google Scholar 

  • Niinemets Ü, Oja V, Kull O (1999) Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant Cell Environ 22:1497–1513

    Article  CAS  Google Scholar 

  • Nobel PS (2009) Physicochemical and Environmental Plant Physiology, 4th edn. CA Academic Press/Elsevier, San Diego

    Google Scholar 

  • Oguchi R, Hikosaka K, Hiura T, Hirose T (2008) Costs and benefits of photosynthetic light acclimation of tree seedlings in response to gap formation. Oecologia 155:665–675

    Article  PubMed  CAS  Google Scholar 

  • Oguchi R, Terashima I, Kou J, Chow WS (2011) Operation of dual mechanisms that both lead to photoinactivation of photosystem II in leaves by visible light. Physiol Plant 142:47–55

    Article  PubMed  CAS  Google Scholar 

  • Okajima Y, Taneda H, Noguchi K, Terashima I (2012) Optimum leaf size predicted by the leaf energy balance model incorporating dependencies of photosynthesis to light and temperature. Ecol Res 27:333–346

    Article  CAS  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. BIOS Scientific Publishing Ltd, Oxford, pp 1–24

    Google Scholar 

  • Pärnik T, Keerberg O (1995) Decarboxylation of primary and end products of photosynthesis at different oxygen concentrations. J Exp Bot 46:1439–1447

    Article  Google Scholar 

  • Pärnik T, Keerberg O (2007) Advanced radiogasometric method for the determination of the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates under steady-state photosynthesis. Physiol Plant 129:34–44

    Article  CAS  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453

    Article  CAS  Google Scholar 

  • Peisker M (1979) Conditions for low, and oxygen-independent CO2 compensation concentrations in C4 plants as derived from a simple model. Photosynthetica 13:198–207

    CAS  Google Scholar 

  • Peisker M, Apel H (2001) Inhibition by light of CO2 evolution from dark respiration: Comparison of two gas exchange methods. Photosynth Res 70:291–298

    Google Scholar 

  • Penning de Vries FWT (1975) The cost of maintenance processes in plant cells. Ann Bot 39:77–92

    CAS  Google Scholar 

  • Penning de Vries FWT, Brunsting AHM, Van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45:339–377

    Article  PubMed  CAS  Google Scholar 

  • Pons TL, van der Werf A, Lambers H (1994) Photosynthetic nitrogen use efficiency of inherently low- and fast-growing species: possible explanations for observed differences. In: Roy J, Garnier E (eds) A Whole Plant Perspective on Carbon–Nitrogen Interactions. SPB, The Hague, pp 61–77

    Google Scholar 

  • Pons TL, Welschen RAM (2002) Overestimation of respiration rates in commercially available clamp-on leaf chambers. Complications with measurement of net photosynthesis. Plant Cell Environ 25:1367–1372

    Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area. Oecologia 116:26–37

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Pro Natl Acad Sci USA 94:13730–13734

    Article  CAS  Google Scholar 

  • Rosenthal DM, Locke AM, Khozaei M, Raines CA, Long SP, Ort DR (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryel RJ, Falge E, Joss U, Geyer R, Tenhunen JD (2001) Penumbral and foliage distribution effects on Pinus sylvestris canopy gas exchange. Theor Appl Climatol 68:109–124

    Article  Google Scholar 

  • Sage RF (1990) A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants. Plant Physiol 94:1728–1734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sage RF (2002) Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Santrucek J, Grise DJ (1995) Temperature effects on the photosynthetic response of C3 plants to long-term CO2 enrichment. Vegetatio 121:67–77

    Article  Google Scholar 

  • Sala A, Tenhunen JD (1996) Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought. Agric For Meteorol 78:203–222

    Article  Google Scholar 

  • Savir Y, Noor E, Milo R, Tlusty T (2010) Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Natl Acad Sci U S A 107:3475–3480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of Photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  • Shapiro JB, Griffin KL, Lewis JD, Tissue DT (2004) Response of Xanthium strumarium leaf respiration in the light to elevated CO2 concentration, nitrogen availability and temperature. New Phytol 162:377–386

    Article  CAS  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology, and rate limitations. Bot Rev 51:53–105

    Article  Google Scholar 

  • Sun Y, Gu L, Dickinson RE, Norby RJ, Pallardy SG, Hoffman FM (2014) Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc Natl Acad Sci U S A 111:15774–15779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157

    Article  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054

    Article  CAS  Google Scholar 

  • Tazoe Y, von Caemmerer S, Estavillo GM, Evans JR (2011) Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance of CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ 34:580–591

    Article  PubMed  Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahé A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci U S A 105:797–802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tcherkez G, Boex-Fontvieille E, Mahé A, Hodges M (2012) Respiratory carbon flux in leaves. Curr Opin Plant Biol 15:301–314

    Article  CAS  Google Scholar 

  • Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci U S A 103:7246–7251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tenhunen JD, Sala SA, Harley PC, Dougherty RL, Reynolds JF (1990) Factors influencing carbon fixation and water use by Mediterranean sclerophyll shrubs during summer drought. Oecologia 82:381–393

    Article  Google Scholar 

  • Terashima I, Evans JR (1988) Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Physiol 29:143–155

    CAS  Google Scholar 

  • Terashima I, Saeki T (1985) A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf. Ann Bot 56:489–499

    CAS  Google Scholar 

  • Terashima I, Araya T, Miyazawa S-I, Sone K, Yano S (2005) Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Ann Bot 95:507–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terashima I, Masuzawa T, Ohba H, Yokoi Y (1995) Does low atmospheric pressure in the alpine environment suppress photosynthesis? Ecology 76:2663–2668

    Article  Google Scholar 

  • Tholen D, Zhu XG (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol 156:90–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepipn S, Zhu XG (2012) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  PubMed  CAS  Google Scholar 

  • Thornley JHM (1970) Respiration, growth and maintenance in plants. Nature 227:304–305

    Article  PubMed  CAS  Google Scholar 

  • Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Tosens T, …, Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64:2269–2281

    Google Scholar 

  • Turnbull MH, Tissue DT, Griffin KL, Richardson SJ, Peltzer DA, Whitehead D (2005) Respiration characteristics in temperature rainforest tree species differ along a long-term soil development chronosequence. Oecologia 143:271–279

    Article  PubMed  Google Scholar 

  • Turnbull MH, Whitehead D, Tissue DT, Schuster WSF, Brown KJ, Griffin KL (2003) Scaling foliar respiration in two contrasting forest canopies. Funct Ecol 17:101–114

    Article  Google Scholar 

  • Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ 26:1097–1116

    Article  Google Scholar 

  • Villar R, Held AA, Merino J (1994) Comparison of methods to estimate dark respiration in the light in leaves of two woody species. Plant Physiol 105:167–172

    PubMed  PubMed Central  CAS  Google Scholar 

  • von Caemmerer S (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Canberra

    Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Article  Google Scholar 

  • Wang X, Lewis JD, Tissue DT, Seemann JR, Griffin KL (2001) Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and darkness. Proc Natl Acad Sci U S A 98:2479–2484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warren CR (2008) Soil water deficit decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. J Exp Bot 59:327–334

    Article  PubMed  CAS  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, …, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Google Scholar 

  • Wright IJ, Reich PB, Westoby B, Ackerly DD, Baruch Z, Bongers F, Cavendar-Bares J, …, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants – a retrospective analysis of the A/C i curves from 109 species. J Exp Bot 44:907–920

    Article  CAS  Google Scholar 

  • Wullschleger SD, Norby RJ, Hanson PJ (1995) Growth and maintenance respiration in stems of Quercus alba after four years of CO2 enrichment. Physiol Plant 93:47–54

    Article  CAS  Google Scholar 

  • Xue X, Gauthier DA, Turpin DH, Weger HG (1996) Interaction between photosynthesis and respiration in the green alga Chlamydomonas reinhardtii. Plant Physiol 112:1005–1014

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S (2002) Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol 128:1087–1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamori W, Noguchi K, Terashima I (2005) Temperature acclimation of photosynthesis in spinach leaves: analysis of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ 28:536–547

    Article  CAS  Google Scholar 

  • Yamori W, Noguchi K, Hikosaka K, Terashima I (2010) Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerance. Plant Physiol 152:388–399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamori W, Hikosaka K, Way D (2014) Temperature response of photosynthesis in C3, C4 and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62:3489–3499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida K, Terashima I, Noguchi K (2007) Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiol 48:606–614

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Watanabe CK, Hachiya T, Tholen D, Shibata M, Terashima I, Noguchi K (2011) Distinct responses of the mitochondrial respiratory chain to long- and short-term high light environments in Arabidopsis thaliana. Plant Cell Environ 34:618–628

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza-Castells J, Sánchez-Gómez D, Valladares F, Hurry V, Atkin OK (2007) Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves. Plant Cell Environ 30:820–833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ülo Niinemets for the valuable comments. This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas (Nos. 21114001, 21114007, 21114009), by KAKENHI (Nos. 20677001, 25291095 and 25660113) and by CREST, JST, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouki Hikosaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hikosaka, K., Noguchi, K., Terashima, I. (2016). Modeling Leaf Gas Exchange. In: Hikosaka, K., Niinemets, Ü., Anten, N. (eds) Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7291-4_3

Download citation

Publish with us

Policies and ethics