Bi-directional Exchange of Volatile Organic Compounds

  • R. Forkel
  • A. Guenther
  • K. Ashworth
  • C. Bedos
  • C. Delon
  • J. Lathiere
  • S. Noe
  • E. Potier
  • J. Rinne
  • O. Tchepel
  • L. Zhang


Volatile organic compounds (VOC) are a relatively minor component of the atmosphere and yet are widely recognized to have important roles in air quality and climate. With the exception of methane, an important greenhouse gas, atmospheric VOC are primarily of interest because of their impact on other atmospheric constituents, including oxidants and aerosol.


Volatile Organic Compound Volatile Organic Compound Emission Biogenic Volatile Organic Compound Acetaldehyde Emission Methyl Vinyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Cleveland CC, Yavitt JB (1997) Consumption of atmospheric isoprene in soil. Geophys Res Lett 24:2379–2382CrossRefGoogle Scholar
  2. DiGangi JP, Boyle ES, Karl T, Harley P, Turnipseed A, Kim S, Cantrell C, Maudlin Iii RL, Zheng W, Flocke F, Hall SR, Ullmann K, Nakashima Y, Paul JB, Wolfe GM, Desai AR, Kajii Y, Guenther A, Keutsch FN (2011) First direct measurements of formaldehyde flux via eddy covariance: implications for missing in-canopy formaldehyde sources. Atmos Chem Phys 11:10565–10578CrossRefGoogle Scholar
  3. Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate-chemistry model. J Geophys Res 111:D12Google Scholar
  4. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s Atmosphere. Environ Sci Technol 41:1514–1521CrossRefGoogle Scholar
  5. Guenther AB, Zimmerman PR, Harley PC, Monson RK Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609Google Scholar
  6. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  7. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492CrossRefGoogle Scholar
  8. Heikes BG, Chang W, Pilson MEQ, Swift E, Singh HB, Guenther A, Jacob DJ, Field BD, Fall R, Riemer D, Brand L (2002) Atmospheric methanol budget and ocean implication: ATMOSPHERIC BUDGET OF METHANOL. Glob Biogeochem Cycles 16: 8081–8013Google Scholar
  9. Insam H, Seewald MA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213CrossRefGoogle Scholar
  10. Jacob DJ (2002) Atmospheric budget of acetone. J Geophys Res 107Google Scholar
  11. Jardine K, Harley P, Karl T, Guenther A, Lerdau M, Mak JE (2008) Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere. Biogeosciences 5:1559–1572CrossRefGoogle Scholar
  12. Jardine K, Karl T, Lerdau M, Harley P, Guenther A, Mak JE (2009) Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia. Plant Biol 11:591–597CrossRefGoogle Scholar
  13. Jardine K, Abrell L, Kurc SA, Huxman T, Ortega J, Guenther A (2010) Volatile organic compound emissions from Larrea tridentata (creosotebush). Atmos Chem Phys 10:12191–12206CrossRefGoogle Scholar
  14. Karl T, Guenther A (2004) Atmospheric variability of biogenic VOCs in the surface layer measured by proton-transfer-reaction mass spectrometry. Int J Mass Spectrom 239:77–86CrossRefGoogle Scholar
  15. Karl T, Harley P, Emmons L, Thornton B, Guenther A, Basu C, Turnipseed A, Jardine K (2010) Efficient atmospheric cleansing of oxidized organic trace gases by vegetation. Science 330:816–819CrossRefGoogle Scholar
  16. Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmos Chem 39:219–233CrossRefGoogle Scholar
  17. Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636CrossRefGoogle Scholar
  18. MacDonald RC, Fall R (1993) Detection of substantial emissions of methanol from plants to the atmosphere. Atmos Environ Part A. Gen Topics 27:1709–1713CrossRefGoogle Scholar
  19. Megonigal JP, Guenther AB (2008) Methane emissions from upland forest soils and vegetation. Tree Physiol 28:491–498CrossRefGoogle Scholar
  20. Millet DB, Jacob DJ, Custer TG, de Gouw JA, Goldstein AH, Karl T, Singh HB, Sive BC, Talbot RW, Warneke C, Williams J (2008) New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmos Chem Phys 8:6887–6905CrossRefGoogle Scholar
  21. Millet DB, Guenther A, Siegel DA, Nelson NB, Singh HB, de Gouw JA, Warneke C, Williams J, Eerdekens G, Sinha V, Karl T, Flocke F, Apel E, Riemer DD, Palmer PI, Barkley M (2010) Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmos Chem Phys 10:3405–3425CrossRefGoogle Scholar
  22. Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling the isoprene emission rate from leaves: Tansley review. New Phytol 195:541–559CrossRefGoogle Scholar
  23. Neef L, van Weele M, van Velthoven P (2010) Optimal estimation of the present-day global methane budget: METHANE OPTIMIZATION. Glob Biogeochem Cycles 24, n/a–n/aGoogle Scholar
  24. Niinemets U, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained. J Geophys Res Atmos 108Google Scholar
  25. Niinemets U, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335CrossRefGoogle Scholar
  26. Schade GW, Goldstein AH (2002) Plant physiological influences on the fluxes of oxygenated volatile organic compounds from ponderosa pine trees. J Geophys Res Atmos 107Google Scholar
  27. Seewald MSA, Singer W, Knapp BA, Franke-Whittle IH, Hansel A, Insam H (2010) Substrate-induced volatile organic compound emissions from compost-amended soils. Biol Fertil Soils 46:371–382CrossRefGoogle Scholar
  28. Stavrakou T, Guenther A, Razavi A, Clarisse L, Clerbaux C, Coheur PF, Hurtmans D, Karagulian F, De Mazière M, Vigouroux C, Amelynck C, Schoon N, Laffineur Q, Heinesch B, Aubinet M, Rinsland C, Müller JF (2011) First space-based derivation of the global atmospheric methanol emission fluxes. Atmos Chem Phys 11:4873–4898CrossRefGoogle Scholar
  29. Twigg MM, House E, Thomas R, Whitehead J, Phillips GJ, Famulari D, Fowler D, Gallagher MW, Cape JN, Sutton MA, Nemitz E (2011) Surface/atmosphere exchange and chemical interactions of reactive nitrogen compounds above a manured grassland. Agric For Meteorol 151:1488–1503CrossRefGoogle Scholar
  30. Warneke C, Karl T, Judmaier H, Hansel A, Jordan A, Lindinger W, Crutzen PJ (1999) Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric HO chemistry. Global Biogeochem Cycles 13:9–17CrossRefGoogle Scholar
  31. Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regioanla scale numerical models. Atmos Environ 23:1293–1304CrossRefGoogle Scholar
  32. Wolfe GM, Thornton JA, McKay M, Goldstein AH (2011) Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. Atmos Chem Phys 11:7875–7891CrossRefGoogle Scholar

Copyright information

© Éditions Quæ 2015

Authors and Affiliations

  • R. Forkel
    • 1
  • A. Guenther
    • 2
    • 3
  • K. Ashworth
    • 4
  • C. Bedos
    • 5
  • C. Delon
    • 6
  • J. Lathiere
    • 7
  • S. Noe
    • 8
  • E. Potier
    • 5
  • J. Rinne
    • 9
  • O. Tchepel
    • 10
  • L. Zhang
    • 11
  1. 1.Karlsruhe Institute of Technology (KIT)—Institute for Meteorology and Climate ResearchGarmisch-PartenkirchenGermany
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Atmospheric Sciences and Global Change DivisionPacific Northwest National LaboratoryRichlandUSA
  4. 4.Lancaster Environment CentreLancaster UniversityLancasterUK
  5. 5.INRA, AgroParisTech, UMR1402 ECOSYSThiverval-GrignonFrance
  6. 6.Laboratoire d’AérologieUniversité Paul-Sabatier (UPS) and CNRSToulouseFrance
  7. 7.Laboratoire des Sciences du Climat et de l’EnvironnementIPSL, UVSQ, CEA, CNRSGif-sur-YvetteFrance
  8. 8.Department of Plant PhysiologyInstitute of Agricultural and Environmental Sciences, Estonian University of Life SciencesTartuEstonia
  9. 9.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  10. 10.CESAM and Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  11. 11.Air Quality Research Division, Science and Technology BranchEnvironment CanadaTorontoCanada

Personalised recommendations