Skip to main content

Stem Cell and Peripheral Nerve Regeneration

  • Chapter
  • First Online:
Stem Cells: Basics and Clinical Translation

Part of the book series: Translational Medicine Research ((TRAMERE,volume 1))

  • 1335 Accesses

Abstract

The application of stem cells has always attracted great interest in the field of peripheral nerve regeneration. In recent years, the rapid development of neural tissue engineering makes it possible to use stem cell transplantation to repair peripheral nerve injury. Seed/support cell or cellular source from stem cell has been known as one of the components for neural tissue engineering. The tissue-engineered nerve grafts (TENGs) support the regeneration of longer peripheral nerve gaps than scaffold alone. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is peripheral nerve regeneration and functional recovery. Stem cells may improve the local microenvironment in nerve injury sites, providing necessary conditions for axonal regeneration. Nowadays, the types of stem cells and their application tend to diversify. Stem cells are more effective in providing necessary factors that promote peripheral nerve regeneration. So far, the application of stem cells for peripheral nerve regeneration is limited mainly because of the low survival rate of transplanted stem cells due to host immune rejection and changes in the local microenvironment. Here, we summarize the latest research progress and application strategies of stem cells in peripheral nerve regeneration. To push the translation of stem cell application for peripheral nerve regeneration into the clinic, we anticipate that a TENG with a close proximity to the regenerative microenvironment of the peripheral nervous system (PNS) will be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  • Alessandri G, Emanueli C, Madeddu P. Genetically engineered stem cell therapy for tissue regeneration. Ann NY Acad Sci. 2004;1015:271–84.

    Article  PubMed  Google Scholar 

  • Andrews MR, Stelzner DJ. Modification of the regenerative response of dorsal column axons by olfactory ensheathing cells or peripheral axotomy in adult rat. Exp Neurol. 2004;190(2):311–27.

    Article  PubMed  Google Scholar 

  • Artico M, et al. Birthday of peripheral nervous system surgery: the contribution of Gabriele Ferrara (1543–1627). Neurosurgery. 1996;39(2):380–2 (discussion 382–3).

    Article  CAS  PubMed  Google Scholar 

  • Asplund M, et al. Incidence of traumatic peripheral nerve injuries and amputations in Sweden between 1998 and 2006. Neuroepidemiology. 2009;32(3):217–28.

    Article  PubMed  Google Scholar 

  • Au E, et al. SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. J Neurosci. 2007;27(27):7208–21.

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  • Bara JJ, et al. Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells. 2014;32(7):1713–23.

    Article  CAS  PubMed  Google Scholar 

  • Battiston B, et al. Chapter 1: Peripheral nerve repair and regeneration research: a historical note. Int Rev Neurobiol. 2009;87:1–7.

    Article  PubMed  Google Scholar 

  • Bianco P, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92.

    Article  CAS  PubMed  Google Scholar 

  • Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982;99(1):31–68.

    Article  CAS  PubMed  Google Scholar 

  • Blazejewska EA, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27(3):642–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borlongan CV, et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res. 2004;1010(1–2):108–16.

    Article  CAS  PubMed  Google Scholar 

  • Boudreau N, Myers C, Bissell MJ. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol. 1995;5(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  • Burdick JA, et al. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med. 2013;5(176):176ps4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Camara-Lemarroy CR, Guzman-de la Garza FJ, Fernandez-Garza NE. Molecular inflammatory mediators in peripheral nerve degeneration and regeneration. NeuroImmunoModulation. 2010;17(5):314–24.

    Article  CAS  PubMed  Google Scholar 

  • Cao L, et al. Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia. 2007;55(9):897–904.

    Article  PubMed  Google Scholar 

  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  • Carriel V, et al. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng. 2013;10(2):026022.

    Article  PubMed  Google Scholar 

  • Chalfoun CT, Wirth GA, Evans GR. Tissue engineered nerve constructs: where do we stand? J Cell Mol Med. 2006;10(2):309–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22(4):275–9.

    Article  PubMed  Google Scholar 

  • Chen Q, et al. Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res. 2005;80(5):611–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, et al. Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Microsurgery. 2006;26(2):111–5.

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, et al. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol. 2007;204(1):443–53.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, et al. Skin-derived precursors as a source of progenitors for cutaneous nerve regeneration. Stem Cells. 2012;30(10):2261–70.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng NC, et al. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009a;15(2):231–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng HW, et al. Decellularization of chondrocyte-encapsulated collagen microspheres: a three-dimensional model to study the effects of acellular matrix on stem cell fate. Tissue Eng Part C Methods. 2009b;15(4):697–706.

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, et al. Neurotrophic and neuroprotective actions of achyranthes bidentata polypeptides on cultured dorsal root ganglia of rats and on crushed common peroneal nerve of rabbits. Neurosci Lett. 2014;562:7–12.

    Article  CAS  PubMed  Google Scholar 

  • Choi KH, et al. The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials. 2010;31(20):5355–65.

    Article  CAS  PubMed  Google Scholar 

  • Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1(2):92–100.

    Article  PubMed  Google Scholar 

  • Chopp M, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. NeuroReport. 2000;11(13):3001–5.

    Article  CAS  PubMed  Google Scholar 

  • Craff MN, et al. Embryonic stem cell-derived motor neurons preserve muscle after peripheral nerve injury. Plast Reconstr Surg. 2007;119(1):235–45.

    Article  CAS  PubMed  Google Scholar 

  • Crane JF, Trainor PA. Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol. 2006;22:267–86.

    Article  CAS  PubMed  Google Scholar 

  • Crigler L, et al. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  • Cuevas P, et al. Peripheral nerve regeneration by bone marrow stromal cells. Neurol Res. 2002;24(7):634–8.

    Article  PubMed  Google Scholar 

  • Cui L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26(5):1356–65.

    Article  CAS  PubMed  Google Scholar 

  • Dabos KJ, et al. The simulated microgravity environment maintains key metabolic functions and promotes aggregation of primary porcine hepatocytes. Biochim Biophys Acta. 2001;1526(2):119–30.

    Article  CAS  PubMed  Google Scholar 

  • Deryugina EI, Muller-Sieburg CE. Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol. 1993;13(2):115–50.

    CAS  PubMed  Google Scholar 

  • Deumens R, et al. Neurite outgrowth promoting effects of enriched and mixed OEC/ONF cultures. Neurosci Lett. 2006;397(1–2):20–4.

    Article  CAS  PubMed  Google Scholar 

  • Deumens R, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol. 2010;92(3):245–76.

    Article  PubMed  Google Scholar 

  • Dezawa M. Insights into autotransplantation: the unexpected discovery of specific induction systems in bone marrow stromal cells. Cell Mol Life Sci. 2006;63(23):2764–72.

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, et al. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci. 2001;14(11):1771–6.

    Article  CAS  PubMed  Google Scholar 

  • Dezawa M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113(12):1701–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • di Summa PG, et al. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience. 2011;181:278–91.

    Article  PubMed  CAS  Google Scholar 

  • Dimmeler S, et al. Translational strategies and challenges in regenerative medicine. Nat Med. 2014;20(8):814–21.

    Article  CAS  PubMed  Google Scholar 

  • Ding F, et al. Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng Part A. 2010;16(12):3779–90.

    Article  CAS  PubMed  Google Scholar 

  • Dombrowski MA, et al. Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells. Brain Res. 2006;1125(1):1–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dupouey P, et al. Immunochemical studies of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci Lett. 1979;12(1):113–8.

    Article  CAS  PubMed  Google Scholar 

  • Erba P, et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811–7.

    Article  CAS  PubMed  Google Scholar 

  • Fairless R, Barnett SC. Olfactory ensheathing cells: their role in central nervous system repair. Int J Biochem Cell Biol. 2005;37(4):693–9.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes KJ, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–93.

    Article  CAS  PubMed  Google Scholar 

  • Fickert S, Fiedler J, Brenner RE. Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage. 2003;11(11):790–800.

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, et al. Nerve regeneration through artificial tubular implants. Prog Neurobiol. 1989;33(2):87–134.

    Article  CAS  PubMed  Google Scholar 

  • Franchi S, et al. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain. 2012;153(4):850–61.

    Article  PubMed  Google Scholar 

  • Fricker FR, et al. Axonal neuregulin 1 is a rate limiting but not essential factor for nerve remyelination. Brain. 2013;136(Pt 7):2279–97.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  • Ginsberg M, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression. Cell. 2012;151(3):559–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gokhan S, Mehler MF. Basic and clinical neuroscience applications of embryonic stem cells. Anat Rec. 2001;265(3):142–56.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TJ, et al. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem. 1993a;51(3):301–11.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin TJ, et al. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc Soc Exp Biol Med. 1993b;202(2):181–92.

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, et al. Neurotrophic actions of bone marrow stromal cells on primary culture of dorsal root ganglion tissues and neurons. J Mol Neurosci. 2010;40(3):332–41.

    Article  CAS  PubMed  Google Scholar 

  • Gu X, et al. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93(2):204–30.

    Article  CAS  PubMed  Google Scholar 

  • Gu JH, et al. Transplantation of adipose derived stem cells for peripheral nerve regeneration in sciatic nerve defects of the rat. Curr Stem Cell Res Ther. 2012;7(5):347–55.

    Article  CAS  PubMed  Google Scholar 

  • Guerout N, et al. Transplantation of olfactory ensheathing cells promotes axonal regeneration and functional recovery of peripheral nerve lesion in rats. Muscle Nerve. 2011;43(4):543–51.

    Article  CAS  PubMed  Google Scholar 

  • Guerout N, et al. Transplantation of olfactory ensheathing cells to evaluate functional recovery after peripheral nerve injury. J Vis Exp. 2014;84:e50590.

    PubMed  Google Scholar 

  • Guo BF, Dong MM. Application of neural stem cells in tissue-engineered artificial nerve. Otolaryngol Head Neck Surg. 2009;140(2):159–64.

    Article  PubMed  Google Scholar 

  • Haastert K, et al. The effects of FGF-2 gene therapy combined with voluntary exercise on axonal regeneration across peripheral nerve gaps. Neurosci Lett. 2008;443(3):179–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heine W, et al. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol. 2004;189(2):231–40.

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter CP, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002;99(4):2199–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honkanen H, et al. Isolation, purification and expansion of myelination-competent, neonatal mouse Schwann cells. Eur J Neurosci. 2007;26(4):953–64.

    Article  PubMed  Google Scholar 

  • Horwitz EM, Dominici M. How do mesenchymal stromal cells exert their therapeutic benefit? Cytotherapy. 2008;10(8):771–4.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz EM, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA. 2002;99(13):8932–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoshiba T, et al. Decellularized matrices for tissue engineering. Expert Opin Biol Ther. 2010;10(12):1717–28.

    Article  CAS  PubMed  Google Scholar 

  • Hsu SH, Su CH, Chiu IM. A novel approach to align adult neural stem cells on micropatterned conduits for peripheral nerve regeneration: a feasibility study. Artif Organs. 2009;33(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  • Hu J, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol. 2007;204(2):658–66.

    Article  PubMed  Google Scholar 

  • Hu N, et al. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials. 2013;34(1):100–11.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, et al. Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J Biomed Mater Res A. 2014;102(5):1370–8.

    Article  PubMed  CAS  Google Scholar 

  • Ingber D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem. 1991;47(3):236–41.

    Article  CAS  PubMed  Google Scholar 

  • Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311(5986):560–2.

    Article  CAS  PubMed  Google Scholar 

  • Jakob H. Stem cells and embryo-derived cell lines: tools for study of gene expression. Cell Differ. 1984;15(2–4):77–80.

    Article  CAS  PubMed  Google Scholar 

  • Jia H, et al. Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse. 2012;66(3):256–69.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, et al. Current applications and future perspectives of artificial nerve conduits. Exp Neurol. 2010;223(1):86–101.

    Article  PubMed  Google Scholar 

  • Jinno H, et al. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem Cells. 2010;28(11):2027–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson A, Dorshkind K. Stromal cells in myeloid and lymphoid long-term bone marrow cultures can support multiple hemopoietic lineages and modulate their production of hemopoietic growth factors. Blood. 1986;68(6):1348–54.

    CAS  PubMed  Google Scholar 

  • Johnson EO, Soucacos PN. Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury. 2008;39(Suppl 3):S30–6.

    Article  PubMed  Google Scholar 

  • Johnson EO, Zoubos AB, Soucacos PN. Regeneration and repair of peripheral nerves. Injury. 2005;36(Suppl 4):S24–9.

    Article  PubMed  Google Scholar 

  • Johnson EO, Charchanti A, Soucacos PN. Nerve repair: experimental and clinical evaluation of neurotrophic factors in peripheral nerve regeneration. Injury. 2008;39(Suppl 3):S37–42.

    Article  PubMed  Google Scholar 

  • Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553–72.

    Article  CAS  PubMed  Google Scholar 

  • Keilhoff G, et al. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng. 2006a;12(6):1451–65.

    Article  CAS  PubMed  Google Scholar 

  • Keilhoff G, et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006b;26(7–8):1235–52.

    PubMed  Google Scholar 

  • Kelsey JL, et al. Upper extremity disorders: frequency, impact, and cost. New York, NY: Churchill Livingstone; 1997.

    Google Scholar 

  • Khaing ZZ, Schmidt CE. Advances in natural biomaterials for nerve tissue repair. Neurosci Lett. 2012;519(2):103–14.

    Article  CAS  PubMed  Google Scholar 

  • Khuong HT, et al. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol. 2014;254:168–79.

    Article  CAS  PubMed  Google Scholar 

  • Kiefer R, et al. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol. 2001;64(2):109–27.

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Yoo JJ, Atala A. Peripheral nerve regeneration using acellular nerve grafts. J Biomed Mater Res A. 2004;68(2):201–9.

    Article  PubMed  CAS  Google Scholar 

  • Kingham PJ, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  • Kocsis JD, et al. Cell transplantation of peripheral-myelin-forming cells to repair the injured spinal cord. J Rehabil Res Dev. 2002;39(2):287–98.

    PubMed  Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96(19):10711–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krekoski CA, et al. Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci. 2001;21(16):6206–13.

    CAS  PubMed  Google Scholar 

  • Kunter U, et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol. 2006;17(8):2202–12.

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA. 2006;103(46):17438–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee G, et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol. 2007;25(12):1468–75.

    Article  CAS  PubMed  Google Scholar 

  • Liao J, et al. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials. 2010;31(34):8911–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin MY, Manzano G, Gupta R. Nerve allografts and conduits in peripheral nerve repair. Hand Clin. 2013;29(3):331–48.

    Article  PubMed  Google Scholar 

  • Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 2005;32(6):270–9.

    Article  CAS  PubMed  Google Scholar 

  • Lokanathan Y, et al. Olfactory ensheathing cells seeded muscle-stuffed vein as nerve conduit for peripheral nerve repair: a nerve conduction study. J Biosci Bioeng. 2014;118(2):231–4.

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol. 2005;191(2):344–60.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, et al. Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neurosci Lett. 2006;398(1–2):12–7.

    Article  CAS  PubMed  Google Scholar 

  • Lu L, et al. Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells. 2008;26(2):580–90.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, et al. Overexpression of CNTF in Mesenchymal Stem Cells reduces demyelination and induces clinical recovery in experimental autoimmune encephalomyelitis mice. J Neuroimmunol. 2009;206(1–2):58–69.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, et al. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials. 2011a;32(10):2489–99.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, et al. Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials. 2011b;32(36):9658–66.

    Article  CAS  PubMed  Google Scholar 

  • Luo H, et al. Tissue-engineered nerve constructs under a microgravity system for peripheral nerve regeneration. Tissue Eng Part A. 2014;21:267.

    Article  PubMed  Google Scholar 

  • Mackinnon SE, Hudson AR. Clinical application of peripheral nerve transplantation. Plast Reconstr Surg. 1992;90(4):695–9.

    Article  CAS  PubMed  Google Scholar 

  • Malin D, et al. The extracellular-matrix protein matrilin 2 participates in peripheral nerve regeneration. J Cell Sci. 2009;122(Pt 7):995–1004.

    Article  CAS  PubMed  Google Scholar 

  • Marchesi C, et al. Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. Glia. 2007;55(4):425–38.

    Article  CAS  PubMed  Google Scholar 

  • May F, et al. GDNF-transduced Schwann cell grafts enhance regeneration of erectile nerves. Eur Urol. 2008;54(5):1179–87.

    Article  PubMed  Google Scholar 

  • May F, et al. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury. Int J Urol. 2013;20(3):344–8.

    Article  CAS  PubMed  Google Scholar 

  • McAllister TN, et al. Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole? Regen Med. 2008;3(6):925–37.

    Article  PubMed  Google Scholar 

  • McKenzie IA, et al. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651–60.

    Article  CAS  PubMed  Google Scholar 

  • Meek MF, Coert JH. US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg. 2008;60(4):466–72.

    CAS  PubMed  Google Scholar 

  • Meyers VE, et al. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res. 2005;20(10):1858–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mimura T, et al. Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J Neurosurg. 2004;101(5):806–12.

    Article  PubMed  Google Scholar 

  • Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med (Maywood). 2006;231(1):39–49.

    CAS  Google Scholar 

  • Mohammadi R, Azizi S, Amini K. Effects of undifferentiated cultured omental adipose-derived stem cells on peripheral nerve regeneration. J Surg Res. 2013;180(2):e91–7.

    Article  CAS  PubMed  Google Scholar 

  • Mohanna PN, et al. A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs. J Anat. 2003;203(6):553–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrison SJ, et al. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 1999;96(5):737–49.

    Article  CAS  PubMed  Google Scholar 

  • Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol. 2010;223(1):102–11.

    Article  CAS  PubMed  Google Scholar 

  • Mummery CL, Davis RP, Krieger JE. Challenges in using stem cells for cardiac repair. Sci Transl Med. 2010;2(27):27ps17.

    Article  PubMed  Google Scholar 

  • Munoz JR, et al. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA. 2005;102(50):18171–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells. 2003;21(4):437–48.

    Article  PubMed  Google Scholar 

  • Napoli I, et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron. 2012;73(4):729–42.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan K, et al. Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering. Biomaterials. 2009;30(26):4309–17.

    Article  CAS  PubMed  Google Scholar 

  • Navarro X, Vivo M, Valero-Cabre A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol. 2007;82(4):163–201.

    Article  CAS  PubMed  Google Scholar 

  • Neuhuber B, et al. Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 2005;1035(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  • Noble J, et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma. 1998;45(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  • Orbay H, et al. Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J Plast Reconstr Aesthet Surg. 2012;65(5):657–64.

    Article  PubMed  Google Scholar 

  • Ortiguela ME, Wood MB, Cahill DR. Anatomy of the sural nerve complex. J Hand Surg Am. 1987;12(6):1119–23.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz LA, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA. 2003;100(14):8407–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park IH, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–6.

    Article  CAS  PubMed  Google Scholar 

  • Park BW, et al. Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2012;6(2):113–24.

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells. 2007;25(11):2896–902.

    Article  PubMed  Google Scholar 

  • Radtke C, Kocsis JD. Peripheral nerve injuries and transplantation of olfactory ensheathing cells for axonal regeneration and remyelination: fact or fiction? Int J Mol Sci. 2012;13(10):12911–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Radtke C, et al. Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res. 2009;1254:10–7.

    Article  CAS  PubMed  Google Scholar 

  • Raimondo S, et al. Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat. 2011;193(4):334–40.

    Article  PubMed  Google Scholar 

  • Rajaram A, Chen XB, Schreyer DJ. Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration. Tissue Eng Part B Rev. 2012;18(6):454–67.

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Anderson DJ. Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. J Neurobiol. 1997;32(7):722–46.

    Article  CAS  PubMed  Google Scholar 

  • Ravindran S, et al. Biomimetic extracellular matrix-incorporated scaffold induces osteogenic gene expression in human marrow stromal cells. Tissue Eng Part A. 2012;18(3–4):295–309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rider DA, et al. Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells. 2008;26(6):1598–608.

    Article  CAS  PubMed  Google Scholar 

  • Ringden O, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006;81(10):1390–7.

    Article  PubMed  Google Scholar 

  • Rinkel WD, et al. What is evidence based in the reconstruction of digital nerves? A systematic review. J Plast Reconstr Aesthet Surg. 2013;66(2):151–64.

    Article  PubMed  Google Scholar 

  • Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve. 2000;23(6):863–73.

    Article  CAS  PubMed  Google Scholar 

  • Rumsey JW, et al. Node of Ranvier formation on motoneurons in vitro. Biomaterials. 2009;30(21):3567–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salzer JL, Brophy PJ, Peles E. Molecular domains of myelinated axons in the peripheral nervous system. Glia. 2008;56(14):1532–40.

    Article  PubMed  Google Scholar 

  • Sanchez-Ramos J, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  • Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol. 2008;9(7):557–68.

    Article  CAS  PubMed  Google Scholar 

  • Schense JC, et al. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol. 2000;18(4):415–9.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347.

    Article  CAS  PubMed  Google Scholar 

  • Scholz T, et al. Neuronal differentiation of human adipose tissue-derived stem cells for peripheral nerve regeneration in vivo. Arch Surg. 2011;146(6):666–74.

    Article  PubMed  Google Scholar 

  • Schuldiner M, et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2000;97(21):11307–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuldiner M, et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 2001;913(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  • Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. Nanomedicine (Lond). 2008;3(2):183–99.

    Article  CAS  Google Scholar 

  • Shakhbazau A, et al. Sensory recovery after cell therapy in peripheral nerve repair: effects of naive and skin precursor-derived Schwann cells. J Neurosurg. 2014;121(2):423–31.

    Article  PubMed  Google Scholar 

  • Shen Y, et al. Neuroprotective effect of carnosine on necrotic cell death in PC12 cells. Neurosci Lett. 2007;414(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  • Shen CC, Yang YC, Liu BS. Peripheral nerve repair of transplanted undifferentiated adipose tissue-derived stem cells in a biodegradable reinforced nerve conduit. J Biomed Mater Res A. 2012;100(1):48–63.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, et al. Transplantation of neural stem cells overexpressing glia-derived neurotrophic factor promotes facial nerve regeneration. Acta Otolaryngol. 2009;129(8):906–14.

    Article  CAS  PubMed  Google Scholar 

  • Skora J, et al. Evaluation of the humoral and cellular immune responses after implantation of a PTFE vascular prosthesis. Postepy Hig Med Dosw (Online). 2012;66:469–74.

    Article  Google Scholar 

  • Su Z, et al. Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia. 2013;61(4):490–503.

    Article  PubMed  Google Scholar 

  • Suganuma S, et al. Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration. J Orthop Sci. 2013;18(1):145–51.

    Article  PubMed  Google Scholar 

  • Sun F, et al. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats. Biomaterials. 2011;32(32):8118–28.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, et al. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem Biophys Res Commun. 2004;322(3):918–22.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  • Tan CW, et al. Sciatic nerve repair with tissue engineered nerve: olfactory ensheathing cells seeded poly (lactic-co-glygolic acid) conduit in an animal model. Indian J Orthop. 2013;47(6):547–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang X, et al. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials. 2012;33(15):3860–7.

    Article  CAS  PubMed  Google Scholar 

  • Tang X, et al. Signaling pathways regulating dose-dependent dual effects of TNF-alpha on primary cultured Schwann cells. Mol Cell Biochem. 2013;378(1–2):237–46.

    Article  CAS  PubMed  Google Scholar 

  • Tannemaat MR, et al. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci. 2008;28(8):1467–79.

    Article  PubMed  Google Scholar 

  • Taylor CA, et al. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008;87(5):381–5.

    Article  PubMed  Google Scholar 

  • Timmer M, et al. Axonal regeneration across long gaps in silicone chambers filled with Schwann cells overexpressing high molecular weight FGF-2. Cell Transplant. 2003;12(3):265–77.

    Article  CAS  PubMed  Google Scholar 

  • Tohill M, Terenghi G. Stem-cell plasticity and therapy for injuries of the peripheral nervous system. Biotechnol Appl Biochem. 2004;40(Pt 1):17–24.

    CAS  PubMed  Google Scholar 

  • Toma JG, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84.

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, et al. Differentiated adipose-derived stem cells promote myelination and enhance functional recovery in a rat model of chronic denervation. J Neurosci Res. 2012;90(7):1392–402.

    Article  CAS  PubMed  Google Scholar 

  • Tomita K, et al. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience. 2013;236:55–65.

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, et al. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun. 2012;419(1):130–5.

    Article  CAS  PubMed  Google Scholar 

  • Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nat Med. 1998;4(8):901–7.

    Article  CAS  PubMed  Google Scholar 

  • Verdu E, et al. Olfactory bulb ensheathing cells enhance peripheral nerve regeneration. NeuroReport. 1999;10(5):1097–101.

    Article  CAS  PubMed  Google Scholar 

  • Volpato FZ, et al. Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials. 2013;34(21):4945–55.

    Article  CAS  PubMed  Google Scholar 

  • Vunjak-Novakovic G, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res. 1999;17(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  • Walsh S, et al. Supplementation of acellular nerve grafts with skin derived precursor cells promotes peripheral nerve regeneration. Neuroscience. 2009;164(3):1097–107.

    Article  CAS  PubMed  Google Scholar 

  • Walsh SK, et al. Skin-derived precursor cells enhance peripheral nerve regeneration following chronic denervation. Exp Neurol. 2010;223(1):221–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, et al. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res. 2008;1188:44–53.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, et al. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res. 2009;1262:7–15.

    Article  CAS  PubMed  Google Scholar 

  • Wang A, et al. Induced pluripotent stem cells for neural tissue engineering. Biomaterials. 2011;32(22):5023–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, et al. Gene network revealed involvements of Birc2, Birc3 and Tnfrsf1a in anti-apoptosis of injured peripheral nerves. PLoS ONE. 2012;7(9):e43436.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wanner IB, et al. Role of N-cadherin in Schwann cell precursors of growing nerves. Glia. 2006;54(5):439–59.

    Article  PubMed  Google Scholar 

  • Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287(5457):1427–30.

    Article  CAS  PubMed  Google Scholar 

  • Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14(8):467–73.

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, et al. Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J Mater Sci Mater Med. 2011;22(8):1947–64.

    Article  CAS  PubMed  Google Scholar 

  • Weimann JM, et al. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA. 2003a;100(4):2088–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weimann JM, et al. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003b;5(11):959–66.

    Article  CAS  PubMed  Google Scholar 

  • Whitlock EL, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39(6):787–99.

    Article  CAS  PubMed  Google Scholar 

  • Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–53.

    Article  CAS  PubMed  Google Scholar 

  • Williams DF. Essential biomaterials science. Cambridge: Cambridge University Press; 2014.

    Google Scholar 

  • Wilson AD, et al. Delayed acetyl-L-carnitine administration and its effect on sensory neuronal rescue after peripheral nerve injury. J Plast Reconstr Aesthet Surg. 2007;60(2):114–8.

    Article  PubMed  Google Scholar 

  • Wislet-Gendebien S, et al. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells. 2005;23(3):392–402.

    Article  CAS  PubMed  Google Scholar 

  • Wolchok JC, Tresco PA. The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams. Biomaterials. 2010;31(36):9595–603.

    Article  CAS  PubMed  Google Scholar 

  • Woodbury D, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364–70.

    Article  CAS  PubMed  Google Scholar 

  • Wrabetz L, et al. Different intracellular pathomechanisms produce diverse myelin protein zero neuropathies in transgenic mice. J Neurosci. 2006;26(8):2358–68.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, et al. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials. 2009;30(22):3711–22.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, et al. Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res. 2008;1239:49–55.

    Article  CAS  PubMed  Google Scholar 

  • Xue C, et al. Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve. Neurorehabil Neural Repair. 2012;26(1):96–106.

    Article  PubMed  Google Scholar 

  • Yang Y, et al. Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Tissue Eng Part A. 2011;17(17–18):2231–44.

    Article  CAS  PubMed  Google Scholar 

  • Yohn DC, et al. Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J Neurosci. 2008;28(47):12409–18.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, et al. Bridging small-gap peripheral nerve defects using biodegradable chitin conduits with cultured schwann and bone marrow stromal cells in rats. J Reconstr Microsurg. 2005;21(8):565–71.

    Article  PubMed  Google Scholar 

  • Zhang Y, et al. A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials. 2010;31(20):5312–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, et al. Biodegradable conduit small gap tubulization for peripheral nerve mutilation: a substitute for traditional epineurial neurorrhaphy. Int J Med Sci. 2013;10(2):171–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zochodne DW. The challenges and beauty of peripheral nerve regrowth. J Peripher Nerv Syst. 2012;17(1):1–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xue, C., Yi, S., Gu, X. (2015). Stem Cell and Peripheral Nerve Regeneration. In: Zhao, R. (eds) Stem Cells: Basics and Clinical Translation. Translational Medicine Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7273-0_10

Download citation

Publish with us

Policies and ethics